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1 Static and dynamic screening in metals

Consider an external field. From linear response the material responds at the
same frequency, giving an induced density

Nind(r) = —quior = —q(Atore™®” + C.O) (1)

The internal field is the total minus the induced, giving a dielectric function

given by
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Inserting this in the point charge potential in Fourier space 1/r = [ 1/¢* exp(iq - r)dq

gives screened potential

U =~ exp(—krer) (3)

krp ~ 0.5A. This model has problems. Induced charge diverges at zero, and
no Friedel oscillations. Instead turn to quantum mechanical expression.
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Assume jellium/free electron gas and plug in plane waves. In the static limit
this leads to Lindhart
k
e(w=0,9) =1+ %F(q/%m«“) (5)

The induced charge can in general be found as

Pind(T) = Zeﬁ/ L(lq) - 1} e'97dq (6)

This leads to two finite induced charge and Friedel.



2 Plasmons

2.1 Plasmon relation to dielectric function

Plasmons are clearly seen to exist when the dielectric function (of w) goes to
zero — induces a finite total field regardless of the size of the external.

Vior (T, w) = /e_l(r, W) Vet (1, w)dr’ (7)

Single e-h excitations vs. collective excitation (Sketch tangent function)
Equation of motion technique:

18, H) = (B — Eo)S; . 8(q) = \/% S 6k(@)$k(@) (8)
k

RPA — a maximum of one excitation per excited state.
Landau damping, sketch for simple metals.

2.2 Plasmon energy dispersion

Starting from the Lindhart dielectric function. Upon solving and Taylor ex-
panding, it is obtained

2

w 3 w
0 =1 p v p 2 2 9
6((]4) 7(‘}) (w+277)2 5(w+in)2qu ( )
3v?q2
p

2.3 Surface plasmon-polaritons

Qualitative features: couples with light. Is not self-sustained. Requires
momentum transfer from e.g. umklapp.
Thin films: Plasmon-polaritons at both surfaces.



3 Linear Reponse

3.1 Kubo formula

Small perturbation = linear response Interaction picture, where time evolution
of operators is in Heisenberg

A, (t) = etHot A(t)eiHot (11)

While the time dependence of due to the perturbation is carried in the wave
functions in the Scrodinger picture

[B(8)) = U [(to)),  Ur(t,to) = eiflotye=itoto (12)

Inserting in Schrédinger one can obtain, after taylor expanding to first order,
and moving to non interacting picture U ~ T'(1 — i ft(i Vﬂo (t')dt')etHoto,

A change in the expectation value of any time independent (assumption) ob-
servable to first order is

0A = (0]4]0) — (0[UT(0)AU(0)[0) (13)
Leading to Kubo formula

A =0) =i [ 0(-0) 014, 0. Vg, ] 000 ()
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3.2 time varying pertubation
Assuming V() = e “ @+ one can obtain

SA(w + i) = Z (O[A]s) (s[V]0)  {0[V]s) (s[A]0) (15)

W — wso + 11 W+ wso + 11

3.3 Non interacting Density-density response

Important case, related to the dielectric function. The observable is now the

density A = 7(r), and the perturbation is still adiabatic and time varying, and
given additionally given by V = [V (r)a(r)dr.

on(r,w) = /X(r, ' w)V (r')dr’ (16)
Where
=3 (O[a(r)s) (s|a(r")[0)  {On(r)]s) (s[A(r’)]0) (17)

W —wso + 17 W+ wso + 11

x(r,r
s
Non-interacting means we can introduce the density operator ni(r) =), ¢5¢;
Arrive at:
Pir) s (r)i(r)d; (r)*

w— (g5 —e&i) +in (18)

X(T’ 7“/,(,«)) = Z(fz - f])

ik



4 Density response function
The change in the total potential can be given in two ways

on(ry,w)

ot (1, W) = Vege (1, w) + dry = /5_1vewt(7°1,w)dr1 (19)
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This defines the dielectric function. Take the functional derivative with vey (r', w).
The definition of the density-density response function is

on(ry,w)
Nw) = oTL W) 20
X(Thr 7w) 6vext(r’7w) ( )
Providing
1
S @) = 81+ [ ) (21)
|r — 7]
4.1 Dielectric function within RPA
Again, start from (19) take functional derivative with respect to vegt
Use
TL(T‘/ w) 5Uezt 571(7”1 w) 1
=4 dr = =d(r—r")— . d
Otor Veat +/ |r — 7] " OVtot (r=r7) Svtor (1) |r — 7] n
This is equal to e(r,r’,w). Identify x°(ry, ', w).
4.2 Local Field effects
Go from
6(7“7 Tlvw) (FT) = €G,G" (q,u)) (23)

Talk about macroscopic dielectric constant: Think of discrete dielectric
function (Matrix)

1
RIGHT : €ps(w) = lim ——— , Wrong : e)y = lim €po(q, w) (24)
q—0 €00 (q’ w) q—0



5 Excitons

5.1 Joint density of states and interband transitions

e Difference from plasmons (Plasmon at higher energies, Exciton lowers en-
ergy).

e Semiconductors and insulators, interband transitions, BSE not RPA. ex-
change (requires overlap) vs. Coulomb ("requires” not too much screen-

ing).
e Difference from trivial excitations (Bound state).

e Joint density of states and critical points

Critical Points at: Vi (Ee — Eyg) =0 (25)

5.2 Two models: Simple two band and screened hydrogen
model

Simple two band model, tight binding, localised orbitals.

N—
States : | Py, 4—0) Z i mcbin,v|\IjO> (26)

m:

= By - (Z eubh o + t(bhbn 10 + bE b 10) — electron) (27)

N-1 U
Hip = — bbbl b 28
‘ 2 1+ |n—m] (28)
m,m
Solve: HF, = E,F,L
The screened hydrogen model takes its offset in an expansion of single particle

excitation functions.
=D Ak) Parcrice, vk (29)
k

Using the vanishing momentum of light at optical frequencies, and assuming a
two band parabolic model. One can obtain a hydrogen like equation for the
envelope function

F(r) = % 3 A(K)et (30)
k

Where r describes the distance between electron and hole. The hydrogen like
equation:

h2v2 62
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= |rew = @ - Eor (31)



where F(r) denotes the envelope function which physical meaning represents
the position of the electron, given the hole is at the origin (r = 0). Typical
exciton binding energies are meV for typical semiconductors, and eV for strong
insulators.

5.3 Role of the effective exciton mass:

Flat bands result in a high exciton mass and a localised exciton whereas dis-
persive bands result in small exciton mass and a delocalised exciton. The
exciton mass is given as pg! = m; ! +m; ', Recall that the inverse of the effec-
tive electron and hole masses can be calculated as the curvature of the bands at
k = 0 for the conduction and valence band (electrons and holes respectively).
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Green functions and quasiparticles

What is a quasiparticles?

What is a Green function?

G(x,2') = -0t —t) <N|{\If(;v), \I/T(x/)}|N> . U(x) = e I (r)ettt

(32)
Fourier transforming the Greens function leads to
TP (1w (p1y* TP () w@F (1)
G(T,?"/;w> — Z i+ ( )QFZ)+ ( ) + Z 7 ( )QI; ( ) <33)
P w—¢e5 +n P w—¢g;27 +1n

\Ilg_P(r) are quasiparticle wavefunctions.

Spectral properties: spectral function imaginary part of Green’s functions

Projected Green’s function Guq(w) = GY,(w) + GO, (w) > VakGak(w)
[(w+iml — H)G*w) =T [(w+inl —HIGw) =1  (34)

The Self-Energy: From Newns-Anderson set or from the Green’s function

note using the EOM technique.

Quasi-particle eigenvalue equation. At w = 6?13 the LHS of (35) diverges
and hence the nominator must vanish.

o iy — 10— 0] [197) (397

w—e?P—H'n

=1 (35)

Self energy and approximations: Wideband, Narrowband, (Elliptic).

Self energy changes from screening: Image charge.
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Berry phase

Parametric Hamiltonian

Adiabatic limit

Eigenstates (of any Hamiltonian) defined down to a gauge transformation.

Finding the phase difference going from R to R + dIl is after linearisation
46 = i { v (B)| i (B) ) -l (36)

This is the Berry connection.

Berry phase
n(C) =i 746 (n(R)|Van(R)) - dR (37)

Berry curvature

o = —//CdS-Bn(R) (38)

B,(R)=—Im )

m#m

Connection to Aharanov-Bohm. Make drawing
Barry Phase in solids: Chern number, Gauge patching.

Other topics:



