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1 Static and dynamic screening in metals

Consider an external field. From linear response the material responds at the
same frequency, giving an induced density

nind(r) = −qutot = −q(Atote
iqr + C.C) (1)

The internal field is the total minus the induced, giving a dielectric function
given by

ε =
q2

q2 + ρ(EF )
(2)

Inserting this in the point charge potential in Fourier space 1/r =
∫
1/q2 exp(iq · r)dq

gives screened potential

U =
1

r
exp(−kTF r) (3)

kTF ≈ 0.5Å. This model has problems. Induced charge diverges at zero, and
no Friedel oscillations. Instead turn to quantum mechanical expression.

ε = 1 +
8π

q2V

∑
αβ

∣∣ ⟨α|eiq·r|β⟩∣∣2
Eβ − Eα − ω − iη

(fα − fβ) (4)

Assume jellium/free electron gas and plug in plane waves. In the static limit
this leads to Lindhart

ε(ω = 0, q) = 1 +
kTF

q2
F (q/2kTF ) (5)

The induced charge can in general be found as

ρind(r) = Ze
1

(2π)3

∫ [
1

ε(q)
− 1

]
eiq·rdq (6)

This leads to two finite induced charge and Friedel.
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2 Plasmons

2.1 Plasmon relation to dielectric function

Plasmons are clearly seen to exist when the dielectric function (of ω) goes to
zero → induces a finite total field regardless of the size of the external.

vtot(r, ω) =

∫
ϵ−1(r, r′, ω)vext(r

′, ω)dr′ (7)

Single e-h excitations vs. collective excitation (Sketch tangent function)
Equation of motion technique:

[Ŝi, Ĥ] = (Ei − E0)Ŝi , Ŝ(q) =
1√
N

∑
k

ϕk(q)Ŝk(q) (8)

RPA → a maximum of one excitation per excited state.
Landau damping, sketch for simple metals.

2.2 Plasmon energy dispersion

Starting from the Lindhart dielectric function. Upon solving and Taylor ex-
panding, it is obtained

ε(q → 0, ω) = 1−
ω2
p

(ω + iη)2
− 3

5

ω2
p

(ω + iη)2
v2F q

2 (9)

ωpl(q) = ωp

(
1 +

3v2fq
2

10ω2
p

+ . . .

)
(10)

2.3 Surface plasmon-polaritons

Qualitative features: couples with light. Is not self-sustained. Requires
momentum transfer from e.g. umklapp.
Thin films: Plasmon-polaritons at both surfaces.
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3 Linear Reponse

3.1 Kubo formula

Small perturbation ⇒ linear response Interaction picture, where time evolution
of operators is in Heisenberg

ÂH0
(t) = eiĤ0tÂ(t)e−iĤ0t (11)

While the time dependence of due to the perturbation is carried in the wave
functions in the Scrödinger picture

|ψ(t)⟩ = UI |ψ(t0)⟩ , UI(t, t0) = eiĤ0tUe−iĤ0t0 (12)

Inserting in Schrödinger one can obtain, after taylor expanding to first order,

and moving to non interacting picture Û ≈ T̂ (1− i
∫ 0

t0
V̂Ĥ0

(t′)dt′)eiĤ0t0 .

A change in the expectation value of any time independent (assumption) ob-
servable to first order is

δÂ = ⟨0|Â|0⟩ − ⟨0|U†(0)ÂU(0)|0⟩ (13)

Leading to Kubo formula

δA(t = 0) = −i
∫ ∞

t0

θ(−t′) ⟨0|
[
ÂĤ0

(0), V̂Ĥ0
(t′)
]
|0⟩dt′ (14)

3.2 time varying pertubation

Assuming V̂ (t) = e−i(ω+iη)tV̂ , one can obtain

δA(ω + iη) =
∑
s

⟨0|Â|s⟩ ⟨s|V̂ |0⟩
ω − ωs0 + ıη

− ⟨0|V̂ |s⟩ ⟨s|Â|0⟩
ω + ωs0 + ıη

(15)

3.3 Non interacting Density-density response

Important case, related to the dielectric function. The observable is now the
density Â = n̂(r), and the perturbation is still adiabatic and time varying, and
given additionally given by V̂ =

∫
V (r)n̂(r)dr.

δn(r, ω) =

∫
χ(r, r′, ω)V (r′)dr′ (16)

Where

χ(r, r′, ω) =
∑
s

⟨0|n̂(r)|s⟩ ⟨s|n̂(r′)|0⟩
ω − ωs0 + ıη

− ⟨0|n̂(r)|s⟩ ⟨s|n̂(r′)|0⟩
ω + ωs0 + ıη

(17)

Non-interacting means we can introduce the density operator n̂(r) =
∑

i ϕ
∗
iϕiĉ

†
i ĉi

Arrive at:

χ(r, r′, ω) =
∑
ik

(fi − fj)
ψi(r)

∗ψj(r)ψi(r
′)ψj(r

′)∗

ω − (εj − εi) + iη
(18)
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4 Density response function

The change in the total potential can be given in two ways

δvtot(r, ω) = vext(r, ω) +

∫
δn(r1, ω)

|r − r1|
dr1 =

∫
ε−1vext(r1, ω)dr1 (19)

This defines the dielectric function. Take the functional derivative with vext(r
′, ω).

The definition of the density-density response function is

χ(r1, r
′, ω) =

δn(r1, ω)

δvext(r′, ω)
(20)

Providing

ε−1(r, r′, ω) = δ(r − r′) +

∫
1

|r − r1|
χ(r1, r

′, ω)dr1 (21)

4.1 Dielectric function within RPA

Again, start from (19) take functional derivative with respect to vext
Use

δvtot = δvext +

∫
n(r′, ω)

|r − r′|
dr ⇒ δvext

δvtot
= δ(r − r′)−

∫
δn(r1, ω)

δvtot(r)

1

|r − r1|
dr1

(22)
This is equal to ϵ(r, r′, ω). Identify χ0(r1, r

′, ω).

4.2 Local Field effects

Go from
ϵ(r, r′, ω) (FT) ⇒ ϵG,G′(q, ω) (23)

Talk about macroscopic dielectric constant: Think of discrete dielectric
function (Matrix)

RIGHT : ϵM (ω) = lim
q→0

1

ϵ−1
00 (q, ω)

,Wrong : ϵM = lim
q→0

ϵ00(q, ω) (24)
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5 Excitons

5.1 Joint density of states and interband transitions

• Difference from plasmons (Plasmon at higher energies, Exciton lowers en-
ergy).

• Semiconductors and insulators, interband transitions, BSE not RPA. ex-
change (requires overlap) vs. Coulomb (”requires” not too much screen-
ing).

• Difference from trivial excitations (Bound state).

• Joint density of states and critical points

Critical Points at: ∇k(Eck − Evk) = 0 (25)

5.2 Two models: Simple two band and screened hydrogen
model

Simple two band model, tight binding, localised orbitals.

States : |Φn,q=0⟩ =
1√
N

N−1∑
m=0

b†n+m,cb
†
m,v |Ψ0⟩ (26)

H0 = E0 −
(∑

εvb
†
nvbnv + t(b†nvbn+1,v + b†nvbn−1,v)− electron

)
(27)

Hint = −
N−1∑
m,m

U

1 + |n−m|
b†nvbnvb

†
mvbmv (28)

Solve: HFi = EiFi.
The screened hydrogen model takes its offset in an expansion of single particle
excitation functions.

Ψex =
∑
k

A(k)Φck+kex,vk (29)

Using the vanishing momentum of light at optical frequencies, and assuming a
two band parabolic model. One can obtain a hydrogen like equation for the
envelope function

F (r) =
1√
V

∑
k

A(k)eik·r (30)

Where r describes the distance between electron and hole. The hydrogen like
equation: [

− h̄
2∇2

2µex
− e2

εr

]
F (r) = (E − EG)F (r) (31)
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where F (r) denotes the envelope function which physical meaning represents
the position of the electron, given the hole is at the origin (r = 0). Typical
exciton binding energies are meV for typical semiconductors, and eV for strong
insulators.

5.3 Role of the effective exciton mass:

Flat bands result in a high exciton mass and a localised exciton whereas dis-
persive bands result in small exciton mass and a delocalised exciton. The
exciton mass is given as µ−1

ex = m−1
e +m−1

h . Recall that the inverse of the effec-
tive electron and hole masses can be calculated as the curvature of the bands at
k = 0 for the conduction and valence band (electrons and holes respectively).
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6 Green functions and quasiparticles

• What is a quasiparticles?

• What is a Green function?

G(x, x′) = −θ(t− t′) ⟨N |
{
Ψ(x),Ψ†(x′)

}
|N⟩ , Ψ(x) = e−iHtΨ(r)eiHt

(32)

• Fourier transforming the Greens function leads to

G(r, r′;ω) =
∑
i

ΨQP
i+ (r)ΨQP

i+ (r′)∗

ω − εQP
i+ + iη

+
∑
i

ΨQP
i− (r)ΨQP

i− (r′)∗

ω − εQP
i− + iη

(33)

ΨQP
i+ (r) are quasiparticle wavefunctions.

• Spectral properties: spectral function imaginary part of Green’s functions

• Projected Green’s function Gaa(ω) = G0
aa(ω) +G0

aa(ω)
∑

k VakGak(ω)

[(ω + iη)I −H0]G
0(ω) = I , [(ω + iη)I −H]G(ω) = I (34)

• The Self-Energy: From Newns-Anderson set or from the Green’s function
note using the EOM technique.

• Quasi-particle eigenvalue equation. At ω = εQP
i the LHS of (35) diverges

and hence the nominator must vanish.

∑
i

[
(ω + iη)I −H0 − Σ(t)

] ∣∣∣ΨQP
i

〉〈
ΨQP

i

∣∣∣
ω − εQP

i + iη
= I (35)

• Self energy and approximations: Wideband, Narrowband, (Elliptic).

• Self energy changes from screening: Image charge.
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7 Berry phase

• Parametric Hamiltonian

• Adiabatic limit

• Eigenstates (of any Hamiltonian) defined down to a gauge transformation.

• Finding the phase difference going from R to R+ dl is after linearisation

dϕ = i

〈
ψm(R)

∣∣∣∣ ∂∂Rψm(R)

〉
· dl (36)

• This is the Berry connection.

• Berry phase

γn(C) = i

∮
C

⟨n(R)|∇Rn(R)⟩ · dR (37)

• Berry curvature

γn = −
∫ ∫

C

dS ·Bn(R) (38)

Bn(R) = − Im
∑
m ̸=m

⟨n(R)|∇RĤ(R)|m(R)⟩ × ⟨m(R)|∇RH(R)|n(R)⟩
(Em(R)− En(R))

2

(39)

• Connection to Aharanov-Bohm. Make drawing

• Barry Phase in solids: Chern number, Gauge patching.

• Other topics:
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