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10305 Weekly exercises

1 Week 1: Recap

1.1 Section 1; Fermi-energy & DOS

Exercise 1.1.1. Show the following relations between the electron density, ρ, and

the Fermi wave vector kF in the case of a 1,2, and 3-dimensional electron gas.

Solution 1.1.1. We start be finding the number of occupied states by defining |FS⟩ as

the Fermi sea and N̂ being the number operator:

N = ⟨FS|N̂ |FS⟩ =
∑
q=↑,↓

Ωn

(2π)n

∫ ∞

−∞
dk ⟨FS|N̂ |FS⟩ (1.1)

Where Ωn denotes L, A, and V for n = 1, 2, 3 corresponding to 1D, 2D, and 3D respec-

tively, σ sums over spin states and n̂ = [1 + exp{−(ε− εf )/kbT}]−1 is the Fermi-Dirac

distribution. At T = 0 the Fermi-Dirac distribution takes the form of a heavy side func-

tion (Step-Function), θ(kf − k). The sum in Eq. (1.1) simply gives a factor of two, and

dividing by Ωn we obtain the density ρn:

ρn
(2π)n

2
=

∫ ∞

−∞
dkO(kf − k) =

∫ kf

−kf

dk (1.2)

Evaluating the integrals with the appropriate Jacobian yields:

ρn
(2π)n

2
=


2kf , 1D for n = 1

πk2f , 2D for n = 2

(4/3)πk3f , 3D for n = 3

⇒


kf = (π/2)ρn , 1D

k2f = 2πρn , 2D

k3f = 3π2ρn , 3D

(1.3)

Exercise 1.1.2. Calculate and sketch the density of states per length, area, and

volume, respectively.

Solution 1.1.2. The density of states D(ε) is defined as D(ε) ≡ dN/dε. Using the

chain rule we may write:

D(ε) ≡ dN

dε
=

dN

dk

dk

dε
=

dN

dk

1

dε/dk
=

dN

dk

1

k
(1.4)

where the last equality arises from the energy relation of the free electron gas with energy

given by ε = k2ℏ2/(2m) ⇒ k2/2 in atomic units, e.g. ℏ = 1, m = 1. Note: The

inversion of the derivative in the above expression is not generally allowed, it is only

2



10305 Weekly exercises
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Figure 1: Density of states (DOS) in 1D, 2D, and 3D for the free electron gas.

allowed in this case as we are dealing with polynomials.

The derivative of N can be found by:

N = ρnΩn = Ωn


2k/π , 1D

k2/(2π) , 2D

k3/(3π2) , 3D

⇒ dN

dε
= Ωn


2/π , 1D

k/π , 2D

k2/π2 , 3D

(1.5)

Using k =
√
2ε, inserting in Eq. (1.5), we obtain:

D1D(ε) =
L

π

√
2

ε
, D2D(ε) =

A

π
, D3D(ε) =

V

π2

√
2ε (1.6)

1.2 Section 2; 1D chain & dimer

In this section we deal with three cases of a 1D chain. The simple case with one atom per

unit cell, then with two atoms per unit cell, and lastly with alternating lattice spacing.

All cases are schematically illustrated in figure 2.

Problem 2.2 Problem 2.3 Problem 2.5

ε0 = , t = , tb = , tb = , ta =
+

−

... ...

|n− 1⟩ |n⟩ |n+ 1⟩

... ...

|nb − 1⟩|na⟩ |nb⟩|na + 1⟩

... ...

|nb − 1⟩ |na⟩|nb⟩ |na + 1⟩

Figure 2: Schematic illustration of the orbitals, interactions, and numbering, of the 1D chains

belonging to problem 2.2, 2.3, and 2.5.
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Exercise 1.2.1. show that the state

|k⟩ =
∞∑

n=−∞
eikna |n⟩ (1.7)

satisfies a discrete version of Bloch’s theorem.

Solution 1.2.1. The approach is to take the inner product of the state with a projection

⟨n+ U |, and show this is the same as ⟨n|k⟩ up to a phase difference.

⟨n+ U |k⟩ =
〈
n+ U

∣∣ ∞∑
n′=−∞

eikn
′a
∣∣n′〉 (1.8)

This is only non-zero for n′ = n+ U , so

⟨n+ U |k⟩ = ⟨n+ U |eik(n+U)a|n+ U⟩ = eik(n+U)a ⟨n+ U |n+ U⟩ = eiknaeikUa (1.9)

But from Eq. (1.7) we have ⟨n|k⟩ = eikna, so the above reduces to

⟨n+ U |k⟩ = ⟨n|k⟩ eikUa (1.10)

Thus it satisfies a discrete version of Bloch’s theorem.

Exercise 1.2.2. Calculate the band energies, ε(k), for the wave vector k in the first

Brillouin zone, k ∈ [−π
a ,

π
a ]. Sketch the band structure and the density of states

(DOS). Determine the center and width of the electronic band.

Solution 1.2.2. The band energies are found from

Ĥ |k⟩ = ε(k) |k⟩ (1.11)

So on applying the operator

Ĥ |k⟩ =
∑
n

ε0c
†
ncn + tc†n−1cn + tc†n+1cn

∑
n′

eikn
′a
∣∣n′〉 (1.12)

There will only be contributions from the 3 states |n′⟩ = |n⟩ or |n± 1⟩, so it reduces to

Ĥ |k⟩ =
∑
n

[
ε0e

ikna + teik(n+1)a + teik(n−1)a
]
|n⟩ =

[
ε0 + teika + te−ika

]∑
n

eikna |n⟩

(1.13)

According to equation 1.7, and using that the complex exponentials in the square brackets

can be written as 2 times cos this reduces to

ε = ε0 + 2t cos(ka) |k⟩ (1.14)
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k

ε
ε0 + 2t
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ε0 − 2t

−π
a

− π
2a 0 π

2a
π
a

ε(k) prob. 2.2

ε(k) prob. 2.3

D(ε)

Figure 3: dispersion relation and DOS of the 1D chain in a 1 atom/unit cell (solid line) and 2

atoms/unit cell (dashed line).

ε(k) = ε0+2t cos(ka) is sketched in figure 3. The density of states is found from isolating

k in ε(k), and taking the derivative D(ε) = dk
dε .

k(ε) =
1

a
arccos

(
ε− ε0
2t

)
⇒ D(ε) = − 1

2ta

1√
1−

(
ϵ−ϵ0
2t

)2 (1.15)

The bandwidth is 4t

Exercise 1.2.3. Argue that the wave functions of the dimerized chain must have

the form

|ks⟩ =
∞∑

n=−∞
eik(a+b)n [cas |na⟩+ cbs |nb⟩] (1.16)

Solution 1.2.3. It makes sense that the solution is found as a superposition of the

states of the individual a and b states. No matter what these can serve as a basis for the

solution. s = 1, 2 as there will be two energy bands in this 2-state system.

Exercise 1.2.4. Calculate the wave functions |sk⟩ and band energies εs(k). Sketch

the band structure and DOS of the dimerized chain, and determine the size of the

band gap, Egap.

Solution 1.2.4. The system can be seen in the right most illustration in figure 2. The

Hamiltonian consists of 2 terms, that correspond to no jumping. Two terms of jumping

5
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within the unit cell, and two terms of jumping out of the cell, as illustrated in figure 2.

Thus it is

Ĥ = ε0c
†
nacna + ε0c

†
nbcnb + ta(c

†
nacnb + c†nbcna) + tb(c

†
(n−1)bcna + c†(n+1)acnb) (1.17)

Where ta is the energy associated with jumping within the unit cell, and tb is associated

with jumping out of the unit cell.

This system is put in matrix form in the |a⟩ and |b⟩ basis, and the eigenvalues and

eigenfunctions will be found from diagonalising.

Ĥab =

[
⟨a|H|a⟩ ⟨a|H|b⟩
⟨b|H|a⟩ ⟨b|H|b⟩

]
(1.18)

The diagonal terms only get contributions from the non-hopping elements. The off di-

agonal terms get contributions from hopping terms that go outside the unit cell, in this

case a phase factor is multiplied on, applying Bloch’s theorem.

Ĥab =

[
ε0 ta + tbe

−ik(a+b)

ta + tbe
ik(a+b) ε0

]
(1.19)

Thus the energies are

(ε0 − λ)2 − (ta + tbe
−ik(a+b))(tb + tae

ik(a+b)) = 0

= (ε0 − λ)2 − (t2a + t2b + tatb(e
ik(a+b) + e−ik(a+b)))

= (ε0 − λ)2 − t2a − t2b − 2tatb cos(k(a+ b))

⇒ λ = ε0 ∓
√
t2a + t2b + 2tatb cos(k(a+ b))

(1.20)

It is seen that the energy of the lower band is lower in the dimerised case. This would

imply that dimerisation is energetically favourable. However, the Coulomb energy is not

taken into account in this model, and therefor there will be a competing term trying to

create equal spacing.

1.3 Section 3; Intuition on band structure

Exercise 1.3.1. Sketch the band structure and the density of states (DOS) of: (A)

an alkali metal, (B) a noble metal, early (C) and late (D) transition metal, direct

(E) and indirect (F) semi-conductor, and semi-metal (G) and graphene (H).

Solution 1.3.1. TABLE of characteristics.

FIGURES comming up.

6



10305 Weekly exercises

k

ε
ε0 + ta + tb

ε0

ε0 − ta − tb

−π
a

− π
2a 0 π

2a
π
a

Figure 4: dispersion relation and DOS of the 1D dimerised chain. Recalling that the short and

long latice spacing, a′ and b respectively, satisfy a′ + b = 2a where a is the latice spacing of the

non-dimerized chain.

2 Week 2: Linear response

Remarks about this exercise set: We are studying how physical quantities change

when subject to weak perturbations. The fact that we’re studying weak perturbations

allows us to base our analysis on time-dependent perturbation theory to first order.

In its essence, this exercise allow us to describe how quantities change to due weak

perturbations and of particular interest we looked at how the electron-density changes

as a consequence of an applied (scalar) potential.

Comments on the interaction picture (IP). Typically smart when the Hamiltonian can

be split up into a simple part which shall be denoted H0 and a remainder V . In the IP,

time-evolution of the operators are taken to be in the Heisenberg picture wrt. H0, i.e.,

for a given operator of ÂH0 we have that ÂH0(t) = eiH0tÂqty(t)e−iH0t0 . The remaining

time-dependence due to V̂ is carried through the state-vector with help from the IP

time-evolution operator ÛI(t, t0) given as Eq. (1) in the exercise-sheet. Additionally, we

also utilise the IP given that the Hamiltonian of a system is time-dependent.

2.1 Section 2; Linear response of time-independent variables

Exercise 2.1.1. Show that the change in the (time-independent) observable Â at

7
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time t = 0 to linear order in V̂ is:

δA(t = 0) = −i
∫ ∞

t0

θ(−t′) ⟨0|
[
ÂĤ0

(0), V̂Ĥ0

]
(t′)|0⟩ dt (2.1)

Solution 2.1.1. The change in any observable, due to a perturbation is given by

δA(t = 0) = ⟨0|Û(0)†ÂÛ(0)|0⟩ − ⟨0|Â|0⟩ (2.2)

The operator Û is given in equation (3) in the problem handout can be Taylor expanded

as

Û ≈ T̂ (1− i

∫ 0

t0

V̂Ĥ0
(t′)dt′)eiĤ0t0 (2.3)

Â is time independent, so upon inserting equation 2.3 in 2.2, the time ordering operator

is unnecessary. Furthermore, the potential must be real, so that V †
Ĥ0

= VĤ0
. Thus:

δA(t = 0) = ⟨0|e−iĤ0t0

(
1 + i

∫ 0

t0

V̂Ĥ0
(t′)dt′

)
Â

(
1− i

∫ 0

t0

V̂Ĥ0
(t′)dt′

)
eiĤ0t0 |0⟩ − ⟨0|Â|0⟩

= ⟨0|Â|0⟩+ ⟨0|i
∫ 0

t0

V̂Ĥ0
(t′)dt′Â|0⟩ − ⟨0|Âi

∫ 0

t0

V̂Ĥ0
(t′)dt′|0⟩ − ⟨0|O(V̂ 2

Ĥ0
)|0⟩ − ⟨0|Â|0⟩

(2.4)

Where the operators e±iĤ0t0 acting to either right or left simply gives e±iE0t0 hence it

will cancel. NB! the sign of the complex exponential function does not change when

acting on the bra instead of the ket! As Â is time independent we have

ÂĤ0
= e−iĤ0tÂeiĤ0t = Â (2.5)

Furthermore, it must commute with the time integral. The states |0⟩ are time independent

as well, so in fact the integral can be moved outside of the inner products, thus:

δA(t = 0) = i

∫ 0

t0

(
⟨0|V̂Ĥ0

(t′)ÂĤ0
(0)|0⟩ − ⟨0|ÂĤ0

(0)V̂Ĥ0
(t′)|0⟩

)
dt′

= −i
∫ 0

t0

⟨0|
[
ÂĤ0

(0), V̂Ĥ0
(t′)
]
|0⟩ dt′ = −i

∫ ∞

t0

θ(−t′) ⟨0|
[
ÂĤ0

(0), V̂Ĥ0
(t′)
]
|0⟩ dt′

(2.6)

This we often denote by Cr
AV as given below:

δA(t = 0) =

∫ ∞

t0

Cr
AV (t

′)dt′ (2.7)

Note: A is time independent everything else is completely general

2.2 Section 2; Harmonic time-dependence (the Kubo formula)

8
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Exercise 2.2.1. Now assume that the perturbation has a harmonic time-dependence

V̂ (t) = e−i(ω+iη)tV̂ and is turned on adiabatically (very slowly) at time t0 = −∞,

(through η). Use the identity Î =
∑

s |s⟩ ⟨s| to show that in this case the change in

the observable A becomes:

δA(ω + iη) =
∑
s

⟨0|Â|s⟩ ⟨s|V̂ |0⟩
ω − ωs0 + iη

− ⟨0|V̂ |s⟩ ⟨s|Â|0⟩
ω + ωs0 + iη

(2.8)

where ωs0 = Es −E0 is the difference between the groundstate and s’th excited state

energy of Ĥ0.

Solution 2.2.1. In order to use Kabo’s formula we need to transform V̂ into the basis

of the unperturbed Hamiltonian, i.e. V̂Ĥ0
(t) = eiĤ0te−i(ω+iη)V̂ e−iĤ0t. We still have that

ÂĤ0
= Â due to time-independence. Inserting into Kabo’s forumla we get:

δA(ω + iη) =

∫ 0

−∞
−i ⟨0|

[
ÂĤ0

, V̂Ĥ0
(t′)
]
|0⟩dt′ (2.9)

Focusing only on the first term of the commutator and using the identity Î =
∑

s |s⟩ ⟨s|,
as well as the fact that the sum over s commutes with the integral to obtain:∑

s

∫ 0

−∞
−i ⟨0|ÂĤ0

|s⟩ ⟨s| eiĤ0te−i(ω+iη)V̂ e−iĤ0t|0⟩ dt′ (2.10)

The effect of the operators is eiĤ0t |s⟩ = eiωst |s⟩, (and ⟨s| eiĤ0t = ⟨s| eiωst), this is ob-

tained through the series expansion of eiĤ0t acting on the state. Hence Eq. (2.10) can

be stated in a more compact form, by taking the exponentials outside, as they are just

constants, and substituting back ÂĤ0
= Â:∑

s

∫ 0

−∞
−ie−i(ω+iη−ω0+ωs)t ⟨0|Â|s⟩ ⟨s|V̂ |0⟩ dt′ (2.11)

Noting here that the other part of the commutator is obtained by letting the ±Ĥ0 operator

act on the opposite states i.e. we obtain +ω0 − ωs in the exponent instead. As both Â

and V̂ is independent of time they commute with the integral which is trivially integrated

to get: ∑
s

⟨0|Â|s⟩ ⟨s|V̂ |0⟩

[
−ie−i(ω+iη−ω0+ωs)

−i(ω − ωs0 + iη)t

]0
−∞

=
∑
s

⟨0|Â|s⟩ ⟨s|V̂ |0⟩
ω − ωs0 + iη

(2.12)

Repeating the same operation for the other part of the commutator shifts the operators

Â and V̂ as well as the sign on ωs0 hence we obtain the solution:

δA(ω + iη) =
∑
s

⟨0|Â|s⟩ ⟨s|V̂ |0⟩
ω − ωs0 + iη

− ⟨0|V̂ |s⟩ ⟨s|Â|0⟩
ω + ωs0 + iη

(2.13)

9
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The result is complex because we introduced the harmonic potential through the complex

exponential. Consequently we must take the real part to obtain a pertubation of the form

cos(ωt)V̂ or imaginary part for the form sin(ωt)V̂ . As η was introduced to turn on the

harmonic pertubation adiabatically we must take the limit limη→0Re, Im[δA(ω + iη)] to

obtain the real solution. NB! the real and imaginary operator does not commute with

the limit.

2.3 Section 3; Kramers-Kronig relations

Exercise 2.3.1. The derivation of the Kramers-Kronig relations.

Solution 2.3.1. Equation 9 in the problem handout can in the notation z → ω, can be

written as

F (ω) =

∫ ∞

0
eiωtF (t)dt (2.14)

This integral is finite as long as F (t) does not grow exponentially or faster. Furthermore

it has no poles, which means that the function

F (ω′)

ω − ω′ + iη
(2.15)

only has a single pole, slightly below the real axis. Integrating the above function around

a contour that runs along the real axis, and follows a halfcircle with a radius going to

infinity along the upper half of the complex plane must thus equal 0.

Furthermore the function goes to zero when |ω′| goes to infinity, so the integral along the

upper half plane is also equal to zero. This means that an integral along the entire real

axis must also equal zero, so ∫ ∞

−∞

F (ω′)

ω − ω′ + iη
dω′ = 0 (2.16)

Using the identity given by equation 13 in the problem handout, with x = ω − ω′, we

obtain∫ ∞

−∞
F (ω′)

(
P

ω − ω′ − iπδ(ω − ω′)

)
dω′ = P

∫ ∞

−∞

F (ω′)

ω − ω′ dω
′ − iπF (ω) = 0 (2.17)

For the above equation to be true both the real and imaginary parts must equal zero.

Taking the real part of the above equation and using Re(if(x)) = −Im(f(x)) yields

P
∫ ∞

−∞

Re(F (ω′))

ω′ − ω
dω′ + πIm(F (ω)) = 0 ⇔ Im(F (ω)) = −P

π

∫ ∞

−∞

Re(F (ω′))

ω′ − ω
dω′ (2.18)

10
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Using equation (15) in the problem handout the above integral can be split in a sum of

two integrals from 0 to infinity, where the second integral has ω → −ω

Im(F (ω)) = −P
π

∫ ∞

0

Re(F (ω′))

ω′ − ω
+

Re(F (ω′))

ω′ + ω
dω′ = −P

π

∫ ∞

0

2ω′Re(F (ω′))

ω′2 − ω2
dω′ (2.19)

Similarly for the imaginary part, using Im(if(x)) = +Re(f(x))

P
∫ ∞

−∞

Im(F (ω′))

ω′ − ω
dω′ − πRe(F (ω)) = 0 ⇔ Re(F (ω)) =

P
π

∫ ∞

−∞

Im(F (ω′))

ω′ − ω
dω′ (2.20)

Using equation 14 in the problem handout this integral also be split up in two terms,

again with ω → −ω in the second term.

Re(F (ω)) =
P
π

∫ ∞

0

Im(F (ω′))

ω′ − ω
− Im(F (ω′))

ω′ + ω
dω′ =

P
π

∫ ∞

0

2ωIm(F (ω′))

ω′ − ω
dω′ (2.21)

Note: The Kramer-Kronig relations thereby couple the imaginary part of the dielectric

function to the real part. The imaginary part is related to absorption in a medium,

whereas the real part is usually related to dispersion. Thereby different optical properties

are seen to be coupled to each other.
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2.4 Section 4; Density-density response

Exercise 2.4.1. We now specialize to the case: Â = n̂(r) and V̂ =
∫
V (r)n̂(r)dr.

In this case the Kubo formula gives the change in the electron density at a point

r when the system is subject to a potential of the form V (r). Again we assume a

harmonic time dependence of the applied potential which is switched on adiabatically

at t0 = −∞. Show that in this case

δn(r, ω) =

∫
χ(r, r′, ω)V (r′)dr (2.22)

where the density-density response function is given by

χ(r, r′, ω) =
∑
i,j

⟨0|n̂(r)|s⟩ ⟨s|n̂(r′)|0⟩
ω − ωs0 + iη

− ⟨0|n̂(r′)|s⟩ ⟨s|n̂(r)|0⟩
ω + ωs0 + iη

(2.23)

Solution 2.4.1. Plugging the form of the observable and potential into equation 2.13

yields

δn(r, ω) =
∑
s

⟨0|n̂(r)|s⟩ ⟨s|
∫
V (r′)n̂(r′)dr′|0⟩

ω − ωs0 + iη
−

⟨0|
∫
V (r′)n̂(r′)dr′|s⟩ ⟨s|n̂(r)|0⟩

ω + ωs0 + iη
(2.24)

The inner product and the integral commute as they are over different variables. Thus

it follows directly that

δn(r, ω) =

∫
V (r′)

∑
s

⟨0|n̂(r)|s⟩ ⟨s|n̂(r′)|0⟩
ω − ωs0 + iη

− ⟨0|n̂(r′)|s⟩ ⟨s|n̂(r)|0⟩
ω + ωs0 + iη

dr′

=

∫
χ(r, r′, ω)V (r′)dr′

(2.25)

2.5 Section 6; Non-interacting density-density response

Exercise 2.5.1. We now consider non-interacting electrons. In this case the eigen-

states |s⟩ are simply Slater determinants build from the single-particle eigenstates

fulfilling Ĥ0 |ϕi⟩ = εi |ϕi⟩. Show that the non-interacting density response function

takes the form

χ0(r, r′, ω) =
∑
i,j

(fi − fj)
ϕ∗i (r)ϕj(r)ϕi(r

′)ϕ∗j (r
′)

ω − (εj − εi) + iη
(2.26)

where fi = θ(εF − εi) is the occupation number of orbital i.

12
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Solution 2.5.1. We start by evaluating the inner products, using the density operator

on second quantised form n̂(r) =
∑

ij ϕ
∗
i (r)ϕj(r)ĉ

†
i ĉj.

⟨0|n̂(r)|s⟩ =
∑
ij

ϕ∗i (r)ϕj(r) ⟨0|ĉ
†
i ĉj |s⟩ =

∑
ij

ϕ∗i (r)ϕj(r)fi(1− fj)δs0ij
(2.27)

Where the index in the delta function denotes the i’th orbital in the groundstate (0), and

the j’th orbital in the s state, and f denotes the probability of finding an electron in the

state, given by the Fermi-Dirac distribution.

Similarly

⟨s|n̂(r′)|0⟩ =
∑
kl

ϕ∗k(r)ϕl(r) ⟨s|ĉ
†
k ĉl|0⟩ =

∑
kl

ϕ∗k(r
′)ϕl(r

′)fl(1− fk)δs0lk
(2.28)

So that the product of the two is

⟨0|n̂(r)|s⟩ ⟨s|n̂(r′)|0⟩

=
∑
ij

ϕ∗i (r)ϕj(r)fi(1− fj)δs0ij

∑
kl

ϕ∗k(r
′)ϕl(r

′)fl(1− fk)δs0lk
(2.29)

The delta functions cancel each other unless i = l and j = k, so it reduces to one sum∑
ij

ϕ∗i (r)ϕj(r)f
2
i (1− fj)

2δs0ij
ϕ∗j (r

′)ϕi(r
′) (2.30)

We are assuming so low temperatures that the Fermi-Dirac distribution is a step function,

so that the above gives ∑
ij

ϕ∗i (r)ϕj(r)fi(1− fj)δs0ij
ϕ∗j (r

′)ϕi(r
′) (2.31)

Now we can write up the full equation (20) from the problem handout∑
s

∑
ij ϕ

∗
i (r)ϕj(r)fi(1− fj)δs0ij

ϕ∗j (r
′)ϕi(r

′)

ω − ωs0 + iη
−

∑
ij ϕ

∗
i (r

′)ϕj(r
′)fi(1− fj)δs0ij

ϕ∗j (r)ϕi(r)

ω + ωs0 + iη

(2.32)

The s-sum only gives a contribution from exactly the state s that has the correct orbital,

thereby cancelling the delta-functions.∑
ij ϕ

∗
i (r)ϕ

∗
j (r

′)fi(1− fj)ϕj(r)ϕi(r
′)

ω − ωji + iη
−
∑

ij ϕ
∗
i (r

′)ϕ∗j (r)fi(1− fj)ϕj(r
′)ϕi(r)

ω + ωji + iη
(2.33)

The index is shifted in the second term as j ↔ i, then using ωij = −ωji, as well as

fjfi = 0, we obtain ∑
ij

ϕ∗i (r)ϕ
∗
j (r

′)ϕj(r)ϕi(r
′)

ω − ωji + iη
(fi(1− fj)− fj(1− fi))

=
∑
ij

(fi − fj)
ϕ∗i (r)ϕ

∗
j (r

′)ϕj(r)ϕi(r
′)

ω − ωji + iη

(2.34)

13
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2.6 Section 7; Fourier properties of periodic systems

Exercise 2.6.1. Show that any function that fulfills f(r, r0) = f(r+R, r0+R), where

R is a lattice vector, is block diagonal in reciprocal space, i.e. f(G + q;G′ + q′) =

f(G+ q,G′ + q)δqq′ . We denote f(G+ q,G′ + q) = fGG′(q).

Solution 2.6.1. The approach is to write up f(G + q,G′ + q′) using both f(r, r′) and

f(r +R, r′ +R), and then figure out, what must be true for q and q′.

f(Q,Q′) =

∫ ∫
eiQrf(r, r′)e−iQ′r′drdr′ (2.35)

f(G+ q,G′ + q′) =

∫ ∫
ei(G+q)rf(r, r′)e−i(G′+q′)r′drdr′ (2.36)

Now using f(r +R, r′ +R)

f(G+ q,G′ + q′) =

∫ ∫
ei(G+q)(R+r)f(r +R, r′ +R)e−i(G′+q′)(R+r′)drdr′ (2.37)

=

∫ ∫
ei(G+q)rf(r +R, r′ +R)e−i(G′+q′)r′e(q−q′)Rdrdr′ (2.38)

Where we have used eiGR = ei2πn ; n ∈ Z, so eiGR = 1. If f(r, r′) and f(r + R, r′ + R)

are equivalent we must also have that Eq. (2.36) and Eq. (2.38) are the same. For this

to be true we get that

(q − q′)R = 2πn , n ∈ Z (2.39)

But q and q′ are both smaller than a reciprocal lattice vector G, as they are in the first

Brillouin zone, thus |(q − q′)R| < 2π, therefore we must have q = q′, as qR ∈]− π;π[.

2.7 Section 7; Non-interacting density response of periodic systems

Exercise 2.7.1. For a periodic system the eigenstates can be labelled |ϕnk⟩ where

n is a band index and k is a wave vector in the first BZ. Show that in this case the

non-interacting density response function takes the form

χ0
G,G′(q, ω) =

∑
nm

∑
k

(fnk − fm(k+q))

〈
ϕnk

∣∣ei(G+q)r
∣∣ϕm(k+q)

〉 〈
ϕm(k+q)

∣∣e−i(G′+q)r
∣∣ϕnk〉

ω − (εm(k+q) − εnk) + iη

(2.40)

Solution 2.7.1. As we are in a periodic structure, we can know the wavefunctions can

be indexed by a band-number and the wavevectors k, thus we let i→ nk, j → mk′

χ0
G,G′(q, ω) =

∫ ∫
ei(G+q)r

∑
nk

∑
mk′

(fnk − fmk′)
ϕ∗nk(r)ϕmk′(r)ϕnk(r

′)ϕ∗mk′(r′)

ω − (εmk′ − εnk) + iη
e−i(G′+q)r′drdr′

(2.41)

14
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Grouping terms in r and r′ this can be written as two inner products

χ0
G,G′(q, ω) =

∑
nk

∑
mk′

(fnk − fmk′)
⟨ϕnk|ei(G+q)r|ϕmk′⟩ ⟨ϕmk′ |e−i(G′+q)r′ |ϕnk⟩

ω − (εmk′ − εnk) + iη
(2.42)

We now focus on only one inner product, namely the second (for no good reason), so

that

⟨ϕmk′ |e−i(G+q)r|ϕnk⟩ =
∫
ϕ∗mk′(r)e

−i(G+q)rϕnk(r)dr (2.43)

=

∫
u∗mk′e

−ik′re−i(G+q)reikrunkdr (2.44)

Above we have used that it is a periodic system, so that the wave function can be written

as a product of a Bloch wave and a plane wave. This integral is the sum of identical

integrals for all lattice vectors R, all given by the integral in the first Brillouin zone.

Hence we may formulate Eq. (2.44) as the sum over all R by substituting r → r+R and

integrating over the first Brillouin zone.

⟨ϕmk′ |e−i(G+q)r|ϕnk⟩ =
∑
R

∫
BZ

u∗mk′e
−ik′(r+R)e−i(G+q)(r+R)eik(r+R)unkdr (2.45)

Again using the identity eiGR = 1 and taking in the sum over R

⟨ϕmk′ |e−i(G+q)r|ϕnk⟩ =
∫
BZ

u∗mk′e
−ik′re−i(G+q)reikrunk

∑
R

ei(k−q−k′)Rdr (2.46)

where the sum results in a delta function in k = k′+q, i.e.
∑

R ei(k+q−k′)R = δ(k−q−k′).
The same argument goes for the second inner product (i.e. k = k′ + q), explicitly noting

that r = r′ as the two integrals are independent. Finally letting k → k′ (as we can label

stuff as we like).

χ0
G,G′(q, ω) =

∑
nm

∑
k

(fnk − fm(k+q))

〈
ϕm(k+q)

∣∣ei(G+q)r
∣∣ϕnk〉 〈ϕnk∣∣ei(G′+q)r

∣∣ϕm(k+q)

〉
ω − (εm(k+q) − εnk) + iη

(2.47)

Q.E.D.
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2.8 Summary

In section 2.1. We arrive at an equation (Eq. (2.6)):

δA(t = 0) = −i
∫ ∞

t0

θ(−t′) ⟨0|
[
ÂĤ0

(0), V̂Ĥ0
(t′)
]
|0⟩dt′

relating the change in an observable A, due to a perturbation V̂ . Every-

thing is completely general to linear order except the observable itself is

assumed to be time independent.

In section 2.2 we assume that the perturbation is harmonic and has taken

forever to get turned on. This could be used to describe when the material

is perturbed by an electromagnetic wave, or any other harmonically vary-

ing perturbation

In section 2.4 we now look at the specific case of the response of the den-

sity at a point to a perturbation that is proportional to the density, and

still periodic. In this case the response function is given by equation

Eq. (2.25) and is denoted the density-density response function.

In section 2.5 we look at the density-density response of non interacting

electrons, the result is Eq. (2.34).

χ0(r, r′, ω) =
∑
i,j

(fi − fj)
ϕ∗i (r)ϕj(r)ϕi(r

′)ϕ∗j (r
′)

ω − (εj − εi) + iη

In section 2.7 we look at the density-density response of a periodic system
of noninteracting electrons, the analysis is then simplified as we can choose
to just work within the FBZ. The result is Eq. (2.47).

χ0
G,G′(q, ω) =

∑
nm

∑
k

(fnk − fm(k+q))

〈
ϕm(k+q)

∣∣ei(G+q)r
∣∣ϕnk

〉 〈
ϕnk

∣∣ei(G′+q)r
∣∣ϕm(k+q)

〉
ω − (εm(k+q) − εnk) + iη

G
e
n
e
ra

l
S
p
e
c
ifi
c

16



10305 Weekly exercises

3 Week 3 & 4: Dielectric function

3.1 Section 1; Time-dependent Hartree theory

Exercise 3.1.1. Given the following induced density functionals

δn(r, ω) =

∫
χ0(r, r′, ω)δvs(r

′, ω)dr′ induced density due to effective potential

(3.1)

δvs(r, ω) = vext(r, ω) +

∫
δn(r′, ω)

|r − r′|
dr′ effective potential (3.2)

δn(r, ω) =

∫
χ(r, r′, ω)vext(r

′, ω)dr′ real induced potential (3.3)

Show that the real and effective density response functions are related via

χ(r, r′, ω) = χ0(r, r′, ω) +

∫ ∫
χ0(r, r1, ω)

1

|r1 − r2|
χ(r2, r

′, ω)dr1dr2 (3.4)

Solution 3.1.1. The goal is to relate χ0 and χ through setting equations (3.1) and (3.3)

equal. They are not generally equal, but will show when the two expressions are equal.

In summary we must require that:∫
χ0(r, r′, ω)δvs(r

′, ω)dr′ =

∫
χ(r, r′, ω)vext(r

′, ω)dr′ (3.5)

Hence we will start by substituting the effective potential from Eq. (3.2) in Eq. (3.1),

keeping careful track of the r-notation: Now only looking at the LHS of Eq. (3.5) we can

insert Eq. (3.2) to get

LHS =

∫
χ0(r, r′, ω)vext(r

′, ω)dr′ +

∫ ∫
χ0(r, r′, ω)

δn(r′′, ω)

|r′ − r′′|
dr′′dr′ (3.6)

Now substituting δn(r′′, ω) with Eq. (3.3) to get∫
χ0(r, r′, ω)vext(r

′, ω)dr′+

∫ ∫ ∫
χ0(r, r′, ω)

1

|r′ − r′′|
χ(r′′, r′′′, ω)vext(r

′′′, ω)dr′′′dr′′dr′ (3.7)

In the last term we now change the notation by r′ → r1 , r′′ → r2. r
′′′ → r′.∫ (

χ0(r, r′, ω)vext(r
′, ω) +

∫ ∫
χ0(r, r1, ω)

1

|r1 − r2|
χ(r2, r

′, ω)vext(r
′, ω)dr2dr1

)
dr′

(3.8)

The RHS remains the same and we may obtain the solution, by differentiating once (to

lift the integral over r′) and dividing by vext(r
′, ω). Thus

χ(r, r′, ω) = χ0(r, r′, ω) +

∫ ∫
χ0(r, r1, ω)

1

|r1 − r2|
χ(r2, r

′, ω)dr1dr2 (3.9)
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3.2 Section 2; The exchange-correlation kernel

Exercise 3.2.1. Given the definition of the density response of an interacting elec-

tron system, χ, and a non-interacting Kohn-Sham system, χs, given by:

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)

∣∣∣∣
n0(r)

(3.10)

χs(r, r′, t− t′) =
δn(r, t)

δvs(r′, t′)

∣∣∣∣
n0(r)

(3.11)

Use the chain rule of functional differentiation to derive the following relation

χ(r, r′, ω) =χs(r, r′, ω)+∫ ∫
χs(r, r1, ω)

[
1

|r1 − r2|
+ fxc[n](r1, r2, ω)

]
χ(r2, r

′, ω)dr1dr2
(3.12)

where

fxc[n](r, r
′, t− t′) =

δvxc[n](r, t)

δn(r′, t′)
(3.13)

Solution 3.2.1. Using the general time dependent Hartree Fock result for the effective

potential

vs(r, t) = vion(r) +

∫
n(r′, t)

|r − r′|
dr′ + vext(r, t) + vxc(r, t) (3.14)

The chain rule of functional derivatives states

δF [Y ]

δX(r)
=

∫
ds
δF [Y ]

δY (s)

δY (s)

δX(r)
(3.15)

We start off by evaluating the functional derivative in Eq. (3.10).

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)
=

∫
δvs(r1, t1)

δvext(r, t)

δn(r, t)

δvs(r1, t1)
dr1t1 (3.16)

We immediately note that the second fraction on the RHS corresponds to χs(r, r1, t− t1).
The remaining term we further expand using Eq. (3.14).

δn(r, t)

δvext(r′, t′)
=

∫
χs(r, r1, t− t1)

[
δvext(r1, t1)

δvext(r′, t′)
+
δvH(r1, t1)

δvext(r′, t′)
+
δvxc(r1, t1)

δvext(r′, t′)
+
δvion(r1, t1)

δvext(r′, t′)

]
dr1t1

(3.17)

Where vH is the Hartree term (second term in RHS of Eq. (3.14)). The first functional

derivative above evaluates to a delta function, as

δvext(r1, t1)

δvext(r′, t′)
= δ(r1 − r′)δ(t1 − t′) (3.18)

18
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The second term (Hartree), is evaluated using the chain rule again

δvH(r1, t1)

δvext(r′, t′)
=

∫
δvH(r1, t1)

δn(r2, t2)

δn(r2, t2)

δvext(r′, t′)
dr2dt2 =

∫
1

|r1 − r2|
χ(r2, r

′, t2 − t′)dr2dt2

(3.19)

We again use the chain rule to evaluate the third term

δvxc(r1, t1)

δvext(r′, t′)
=

∫
δvxc(r1, t1)

δn(r2, t2)

δn(r2, t2)

δvext(r′, t′)
dr2dt2 =

∫
fxc(r1, r2, t2 − t1)χ(r2, r

′, t2 − t′)dr2dt2

(3.20)

where the first fraction on the RHS is fxc(r1, r2, t1− t2) from Eq. (3.13), and the second

fraction is χ(r2, r
′, t2 − t′). The term with vion is zero, as we have previously assumed

the ions to be stationary, hence the potential will not change due to any external field.

Collecting everything the full functional derivative becomes

δn(r, t)

δvext(r′, t′)
=

∫
χs(r, r1, t− t1)

[
δ(r1 − r′)δ(t1 − t′) +

∫
1

|r1 − r2|
χ(r2, r

′, t2 − t′)dr2dt2

+

∫
fxc(r1, r2, t2 − t1)χ(r2, r

′, t2 − t′)dr2dt2

]
dr1dt1

(3.21)

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)
= χs(r, r′, t− t′)+∫ ∫

χs(r, r1, t− t1)

[
1

|r1 − r2|
+ fxc(r1, r2, t2 − t1)

]
χ(r2, r

′, t2 − t′)dr2dt2dr1dt1

(3.22)

Fourier transforming the time dependence we see that all terms correspond to convolu-

tions (Unsure why this applies) so that we obtain:

χ(r, r′, ω) = χs(r, r′, ω) +

∫ ∫
χs(r, r1, ω)

[
1

|r1 − r2|
+ fxc(r1, r2, ω)

]
χ(r2, r

′, ω)dr2dr1

(3.23)

3.3 Section 3; The dielectric function

Exercise 3.3.1. Show that the inverse dielectric function is given by

ϵ−1(r, r′, ω) = δ(r − r′) +

∫
1

|r − r1|
χ(r1, r

′, ω)dr1 (3.24)

Solution 3.3.1. First equation 17 and 18 from the problem handout are set equal to

each other

δvtot(r, ω) =

∫
ϵ−1vext(r1, ω)dr1 = vext(r, ω) +

∫
δn(r1, ω)

|r − r1|
dr1 (3.25)
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We then take the functional derivative of the above equation with respect to vext(r
′, ω)

δvtot(r, ω)

δvext(r′, ω)
=

δvext(r, ω)

δvext(r′, ω)
+

∫
1

|r − r1|
δn(r1, ω)

δvext(r′, ω)
dr1 (3.26)

the first term in the RHS just evaluates to a delta function δ(r − r′). The functional

derivative in the integral is just the definition of χ evaluated at χ(r1, r
′, ω), so we obtain:

δvtot(r, ω)

δvext(r′, ω)
= δ(r − r′) +

∫
1

|r − r1|
χ(r1, r

′, ω)dr1 (3.27)

Now we repeat the operation on the middle term in Eq. (3.25), which somewhat trivially

reduces to:

δvtot(r, ω)

δvext(r′, ω)
=

∫
ϵ−1 δvext(r1, ω)

δvext(r′, ω)
dr1 =

∫
ϵ−1δ(r1 − r′)dr1 = ϵ−1 (3.28)

Thus it all reduces to

ϵ−1(r, r′, ω) = δ(r − r′) +

∫
1

|r − r1|
χ(r1, r

′, ω)dr1 (3.29)

Exercise 3.3.2. When exchange and correlation effects are neglected, i.e. within

the RPA, the total potential δvtot becomes identical to the effective potential δvs. In

that case show that the dielectric function is given in real space by

ϵ(r, r′, ω) = δ(r − r′) +

∫
1

|r − r1|
χ0(r1, r

′, ω)dr1 (3.30)

Solution 3.3.2. We start by isolating the inverse dielectric function from

δvtot =

∫
ϵ−1(r, r′, ω)vext(r

′, ω)dr′ (3.31)

by taking the functional derivative with respect to δvext(r
′′, ω) so that

δvtot(r)

δvext(r′′)
=

∫
ϵ−1(r, r′, ω)δ(r′ − r′′)dr′ = ϵ−1(r, r′, ω) (3.32)

From the above we may flip the relation so that

δvext(r
′)

δvtot(r)
= ϵ(r, r′, ω) (3.33)

In the case where exchange and correlation effects are neglected δvtot takes the form

of Eq. (3.14) with vxc = 0. As the ionic potential doesn’t change with applied fields

(frozen in approximation) the only terms are the Hatree term and the external potential.
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Isolating the external potential in Eq. (3.14) and using the adiabatic property (of turning

on the potential at negative infinity)1 we obtain:

δvext(r
′)

δvtot(r)
=
δvtot(r

′)

δvtot(r)
−
∫
δn(r1, ω)

δvtot(r)

1

|r − r1|
dr1

= δ(r − r′)−
∫

1

|r′ − r1|
χ0(r1, r

′, ω)dr1 = ϵ(r, r′, ω)

(3.34)

where we may shift the indexes of r′ ↔ r on the LHS to obtain the solution.

3.4 Section 4; the scalar macroscopic dielectric function

Exercise 3.4.1. Argue why the scalar macroscopic dielectric function ϵM (ω) given

by:

ϵM (ω) = lim
q→0

1

ϵ−1
00 (q, ω)

(3.35)

is in general different from limq→0 ϵ00(q, ω). When does it hold that

ϵM = limq→0 ϵ00(q, ω)?

Solution 3.4.1. Start by recalling that the dielectric function relates the external poten-

tial to the total potential through:

δvtot(r, ω) =

∫
ϵ−1(r, r′, ω)vext(r

′, ω)dr′ (3.36)

If we consider the discretised version of the above equation in reciprocal space the dielec-

tric function has the matrix form:

ϵ =


ϵ00 ϵ01 . . .

ϵ10 ϵ11

. .

. .

. .

 (3.37)

where the matrices inside the matrices represent the discretised momentum coordinate

q, and the corresponding external potential has the form:

vext = [v(G = 0, q = 0), v(G = 0, q1), v(G = 0, q2), ..., v(G = 1, q = 0), ...]T (3.38)

Evidently, as we are interested in the change in the total potential due to an external field,

we must take the form desired element of ϵ−1 rather than ϵ as the relation (A[1, 1])−1 =

1so that δvtot = δvext +
∫
δn(r′, ω)/|r − r′|dr′
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A−1[1, 1] is only true for diagonal matrices. We must further focus on the ϵ00 element as

we are interested in the change due to ”slow”-varying field, such as optical frequencies.

Consequently taking the limit ϵM = limq→0 ϵ00(q, ω) would change the question from:

”how is the total potential influence by an external potential” to ”what external potential

would generate this change in the total potential”.
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4 Week 5: Plasmons

4.1 Section 1; Second quantized Coulomb interaction

Exercise 4.1.1. Use the fact that

1

Ω

∫
eirke−ir′k′

|r − r′|
drdr′ = δkk′

4π

k2
(4.1)

to derive the second quantized form of the Coulomb interaction, Ĥint, given by

Ĥint =
1

2Ω

∑
q

∑
k,k′

Vqc
†
kc

†
k′ck′+qck−q (4.2)

where Vq = 4π/q2.

Solution 4.1.1. We start by recalling that a second quantized operator can be obtained

from GP (B.12):

Q̂ =
1

2

∑
k,k′,q,q′

〈
ψkψq

∣∣1
r

∣∣ψk′ψq′
〉
c†kc

†
k′cqcq′ (4.3)

As it is assumed that the system is homogeneous, i.e. translational invariant, the states

are spanned by plane waves of the form |k⟩ = Ω−1/2eikr we may write

Ĥint =
1

2Ω2

∑
k,k′,q,q′

∫ ∫
e−ikre−ik′r′ 1

|r − r′|
eiqreiq

′r′drdr′c†kc
†
k′cqcq′ (4.4)

Combining the exponentials in r and r′ we get it on the form of the fact that we are to

use
1

Ω

∫ ∫
e−ikr 1

|r − r′|
eik

′r′drdr′ = δk,k′
4π

k2
(4.5)

so that

Ĥint =
1

2Ω2

∑
k,k′,q,q′

∫ ∫
e−i(k−q)r 1

|r − r′|
ei(q

′−k′)r′drdr′c†kc
†
k′cqcq′

=
1

2Ω

∑
k,k′,q,q′

δk−q,q′−k′
4π

Q2
c†kc

†
k′cqcq′

(4.6)

where the Kronecker delta function corresponds to conservation of momentum (which

must be true given a translational invariant system). From this we may obtain an ex-

pression for q′ = k′+k−q. Shifting the index q1 → k−q leads to q′ = k′+q. Evaluating

Q2 = (k − q)(q′ − k′) = (k − q)2 = q21. Renaming q1 → q we obtain the solution

Ĥint =
1

2Ω

∑
q

∑
k,k′

4π

q2
c†kc

†
k′ck′+qck−q =

1

2Ω

∑
q

∑
k,k′

Vqc
†
kc

†
k′ck′+qck−q (4.7)
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In the remainder we have let
Vq

2Ω → Vq Q.E.D.

4.2 Section 2; Equation of motion method (EOM)

Exercise 4.2.1. Show that Ŝ†
i = |Ei⟩ ⟨E0| satisfy the commutation relation[

Ĥ, Ŝ†
i

]
= (Ei − E0)Ŝ

†
i and

[
Ŝi, Ĥ

]
= (Ei − E0)Ŝi (4.8)

Solution 4.2.1. The commutator is given by[
Ĥ, Ŝ†

i

]
= ĤŜ†

i |E0⟩ − Ŝ†
i Ĥ |E0⟩ = (Ei − E0) |Ei⟩ = (Ei − E0)Ŝ

†
i |E0⟩ (4.9)

4.3 Section 3; RPA, Excitation operator

Exercise 4.3.1. We now introduce a set of simple excitation operators defined as,

Ŝ†
k(q) = c†k+qck (4.10)

Ŝk(q) = c†kck+q (4.11)

This operator creates a single electron-hole pair of momentum q. Show that

Ŝ†
k(q) |E0⟩ is an eigenstate of Ĥ0, and that the commutator with Ĥ0 is given by[

Ŝk(q), Ĥ0

]
= (εk+q − εk)Ŝk(q) (4.12)

Solution 4.3.1. Applying Ĥ0 on Ŝ†
k(q) |E0⟩ gives

Ĥ0Ŝ
†
k(q) |E0⟩ =

∑
k

εkc
†
kckc

†
k′+qck′ |E0⟩ =

∑
k

εkc
†
kck |E0⟩k

′+q
k′ (4.13)

Where the subscript (superscript) on the state denotes that an electron has been removed

(added) in the state. Here it is important to note that |E0⟩ is the Fermi sea containing

many different states. So that

Ĥ0Ŝ
†
k(q) |E0⟩ = Ĥ0 |E0⟩k

′+q
k′ =

∑
k

εkc
†
kck |E0⟩k

′+q
k′ = (EFS + εk′+q − εk′) |E0⟩k

′+q
k′ (4.14)

So that Ŝ†
k(q) |E0⟩ is indeed an eigenstate of Ĥ0.

The commutator is found by acting on a state |E0⟩

(ŜkĤ0 − Ĥ0Ŝk) |E0⟩ = (EFS − (EFS + εk − εk+q)) |E0⟩kk+q = (εk+q − εk)Ŝk |E0⟩ (4.15)

So that the commutator is indeed[
Ŝk(q), Ĥ0

]
= (εk+q − εk)Ŝk(q) (4.16)
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Exercise 4.3.2. Insert the exact excitation operator of the form

Ŝ(q) =
1√
N

∑
k

ϕk(q)Ŝk(q) (4.17)

into the defining equation (Eq. (4.8), right) to obtain

1√
N

∑
k

Ŝk(q)

[
(ω(q)− (εk+q − εk))ϕk(q)− Vq

∑
k′

(fk′ − fk′+q)ϕk′(q)

]
= 0 (4.18)

Solution 4.3.2. In order to plug into Eq. (4.8) we first note that

[
Ŝ(q), Ĥ

]
=

[
1√
N

∑
k

ϕk(q)Ŝk(q), Ĥ

]
=

1√
N

∑
k

ϕk(q)
[
Ŝk(q), Ĥ

]
(4.19)

As the resulting sum of commutators is known from exercise 4.3.1, and yields[
Ŝk(q), Ĥ

]
= (εk+q − εk)Ŝk(q) = ω(q)Ŝk(q) (4.20)

where the interaction energy of the excitation is labelled ω(q). So that the commutator

of the real interaction operator becomes[
Ŝ(q), Ĥ

]
=

1√
N

∑
k

ϕk(q)ω(q)Ŝk(q) (4.21)

The commutator in Eq. (4.8) can be split into two commutators by[
Ŝ, Ĥ

]
=
[
Ŝ, Ĥ0

]
+
[
Ŝ, Ĥint

]
(4.22)

The commutator with the interacting Hamiltonian is given in equation (16) in the prob-

lem handout. [
Ŝk, Ĥint

]
= Vq(fk − fk+q)

∑
k′

Ŝk′(q) (4.23)

Hence the commutator with the total interaction operator becomes[
Ŝ, Ĥint

]
=

1√
N

∑
k

Vq(fk − fk+q)ϕk(q)
∑
k′

Ŝk′(q) (4.24)

The sums over k and k′ runs over the same elements, therefore the two indexes can be

exchanged, so we choose to rename them by k ↔ k′, so[
Ŝ, Ĥint

]
=

1√
N

∑
k′

Vq(fk′ − fk′+q)ϕ
′
k(q)

∑
k

Ŝk(q) (4.25)
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Now for the other commutator

The commutator
[
Ŝ, Ĥ0

]
is found by[

Ŝ, Ĥ0

]
|Ei⟩ = (ŜĤ0 − Ĥ0Ŝ) |Ei⟩ = (Ei − Ĥ0)Ŝ |Ei⟩ (4.26)

Inserting Eq. (4.17) we obtain[
Ŝ, Ĥ0

]
|Ei⟩ =

1√
N

∑
k

(Ei − Ĥ0)ϕkŜk(q) |Ei⟩ (4.27)

=
1√
N

∑
k

(Ei − (Ei − εk+q + εk))ϕkŜk(q) |Ei⟩ (4.28)

=
1√
N

∑
k

(εk+q − εk)ϕkŜk(q) |Ei⟩ (4.29)

Inserting equations (4.25) and (4.29) into the RHS of equation (4.22), and (4.21) into

the LHS of Eq. (4.22)

1√
N

∑
k

ϕk(q)ω(q)Ŝk(q) =
1√
N

∑
k

Ŝk(q)

(
(εk+q − εk)ϕk + Vq

∑
k′

(fk′ − fk′+q)ϕk′(q)

)
(4.30)

Subtracting the RHS and omitting the sum over k we obtain the result:

1√
N

∑
k

Ŝk(q)

[
(ω(q)− (εk+q − εk))ϕk(q)− Vq

∑
k′

(fk′ − fk′+q)ϕk′(q)

]
= 0 (4.31)

where we can write the expansion coefficients by the recursive formula

ϕk(q) =
Vq

ω(q)− (εk+q − εk)

∑
k′

(fk′ − fk′+q)ϕk′(q) (4.32)

Exercise 4.3.3. Assuming a finite system, i.e. a finite number of electrons and

thus a finite number of allowed intraband transitions with (fk − fk+q) = 1, sketch

the right hand side of the following equation (Eq. (19) in the handout) as a function

of ω(q).

1 = Vq
∑
k

fk − fk+q

ω(q)− (εk+q − εk)
(4.33)

Compare with fig. 10 on page 254 in GP.

Solution 4.3.3. The energy follows the free particle dispersion relation, as the states are

assumed to be plane waves, with the effective mass set to one. Thus the energy difference

in the denominator is

εk+q − εk =
(k + q)2

2
− k2

2
= kq − q2

2
(4.34)
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Which means the peaks, found when the denominator is zero, are equally spaced as a

function of ω(q). There cannot be an infinite number of transitions, as q then would

have to be large enough that we exit the FBZ. So at some point there must be a cutoff.

ω(q)

f((ω(q)) f(ω(q))

Exercise 4.3.4. Show that the solution for the expansion coefficients is given by

ϕk(q) =
Vq

ω(q)− (εk+q − εk)
(4.35)

Solution 4.3.4. Inserting the solution given above, Eq. (4.35), in the solution of exercise

4.3.2, given in Eq. (4.32), on the LHS we get

ϕk(q) =
Vq

ω(q)− (εk+q − εk)

∑
k′

(fk′ − fk′+q)ϕk′(q)

=
Vq

ω(q)− (εk+q − εk)

∑
k′

Vq
fk′ − fk′+q

ω(q)− (εk′+q − ε′k)

(4.36)

The solution must satisfy the transcendental equation, Eq. (4.33), for a solution to exist.

Hence the sum over k′ must equal 1 and consequently the remaining term is the ansatz.

Exercise 4.3.5. Sketch the form of this function and compare with the correspond-

ing result for the finite system.

r.h.s. of Eq. (19) = Re{ϵ(q, ω)} ≈ 1− α(q)

ω − (⟨εk+q − εk⟩) + γ
(4.37)

where ⟨εk+q − εk⟩ denotes the average of the allowed non-interacting transition en-

27



10305 Weekly exercises

ergies and γ is a positive number.

Solution 4.3.5. As with the previous expression (Look in problem handout) we look for

the case when the real part of the dielectric function vanishes, this is the case when

1 =
α(q)

ω − ⟨(εk+q − εk)⟩+ γ
(4.38)

This equation is sketched below:

1

⟨εk+q − εk⟩+ γ

ω(q)

f((ω(q)) f(ω(q))
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5 Week 6 & 7: Excitons

5.1 Section 1; Model

Exercise 5.1.1. We are considering a simple two band model of a one dimensional

semi-conductor. The valence and conduction band atomic orbitals of unit cell n

are denotes ϕvn(r) = ϕv(r −RN ) and ϕvn(r) = ϕv(r −RN ) respectively and satisfy

the orthonormality relations, i.e., ⟨ψn,α|ψm,β⟩ = δnmδαβ for α, β ∈ {v, c}. The

non-interacting part of the Hamiltonian takes the form:

H0 =
∑
n

εv ĉ
†
nv ĉnv + t

(
ĉ†nv ĉn+1,v + ĉ†nv ĉn−1,v

)
+
∑
n

εcĉ
†
ncĉnc − t

(
ĉ†ncĉn+1,c + ĉ†ncĉn−1,c

) (5.1)

Calculate and sketch the band structure assuming that εc − εv > 4t. Express the

gab in terms of the parameters of the model. Sketch the joint density of states and

identify the critical points.

Solution 5.1.1. We let the Hamiltonian act on a Bloch state |k⟩ =
∑

n e
ikna |n⟩ and

otherwise follow the exact same approach as solution 1.2.2, the first term will only give

contributions in the valence band, whereas the second will only give contributions in the

conduction band, thereby we have from equation 1.14 that

εvalence = εv + 2t cos(ka)

εconduction = εc − 2t cos(ka)
(5.2)

As εc − εv > 4t there is a bandgap.

5.2 Section 2; Particle-hole excitations

Exercise 5.2.1. It turns out that for our purpose it is simpler to represent the states

in terms of the atomic orbital basis. Argue that the ground state can be written as

|Ψ0⟩ =
∏
n

c†n,v |0⟩ (5.3)

Solution 5.2.1. From equation (6) in the problem handout we see that electrons are

added to all states in the FBZ, so it makes sense to add all n states in the FBZ to the

zero state.
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k

ε
εc + 2t

εc

εv

εv − 2t

−π
a

− π
2a

π
2a

π
a

ε(k)

JDOS

ε

εc − εv

εc − εv + 4t

Figure 5: dispersion relation and DOS of the 1D dimerised chain. Recalling that the short and

long latice spacing, a′ and b respectively, satisfy a′ + b = 2a where a is the latice spacing of the

non-dimerized chain.

5.3 Section 3; Collective excitations: Excitons

Exercise 5.3.1. We now perform a particle-hole transformation by introducing a

new set of creation/annihilation operators as

b̂†nv = ĉn,v, b̂n,v = ĉ†n,v, b̂†n,c = ĉ†n,c, b̂n,c = ĉn,c (5.4)

The operators b̂† create electrons in the conduction band and holes in the valence

band. The groundstate |Ψ0⟩ is the vacuum state for the new operators (denoted by

|0⟩b). The zero-momentum states in Eq. (9), are given by

|Φn,q=0⟩ =
1√
N

N−1∑
m=0

b̂†n+m,cb̂
†
m,v |0⟩b (5.5)

Show that the non-interacting Hamiltonian in terms of the new creation/annihilation

operators reads
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H0 = E0 −
∑
n

εv b̂
†
nv b̂nv + t(b̂†nv b̂n+1,v + b̂†nv b̂n−1,v)

+
∑
n

εcb̂
†
ncb̂nc − t(b̂†ncb̂n+1,c + b̂†ncb̂n−1,c)

(5.6)

Where E0 is the non interacting groundstate energy. Similarly, the interaction reads

Ĥint = −
∑
n,m

U

1 + |n−m|
b̂†ncb̂ncb̂

†
mv b̂mv (5.7)

Solution 5.3.1. Inserting the operators in equation Eq. (5.5) in the Hamiltonian in

equations (2) and (3) in the project handout we obtain

H0 =
∑
n

εv b̂nv b̂
†
nv + t(b̂nv b̂

†
n+1,v + b̂nv b̂

†
n−1,v)

+
∑
n

εcb̂
†
ncb̂nc − t(b̂†ncb̂n+1,c + b̂†ncb̂n−1,c)

(5.8)

To get this on the desired form of equation 5.6, we need the anit commutator (we use

the anti commutator as we are working with fermions) for creation and annihilation

operators
[
ĉi, ĉ

†
j

]
= δij →

[
b̂†i , b̂j

]
= δij Upon using these relations in the above equation

H0 =
∑
n

εv(1− b̂†nv b̂nv)− t(b̂nv b̂
†
n+1,v + b̂nv b̂

†
n−1,v)

+
∑
n

εcb̂
†
ncb̂nc − t(b̂†ncb̂n+1,c + b̂†ncb̂n−1,c)

(5.9)

The sum of all energies in the valence band is just the ground state energy, thus

H0 = E0 −
∑
n

εv b̂
†
nv b̂nv − t(b̂nv b̂

†
n+1,v + b̂nv b̂

†
n−1,v)

+
∑
n

εcb̂
†
ncb̂nc − t(b̂†ncb̂n+1,c + b̂†ncb̂n−1,c)

(5.10)

Similarly by inserting the new operators in the inceracting Hamiltonian we obtain

Hint = −
∑
m,n

U

1 + |n−m|
b̂†cnb̂cn(1− b̂vmb̂

†
vm)

= −
∑
m,n

U

1 + |n−m|
b̂†cnb̂cn(1− (1− b̂†vmb̂vm))

= −
∑
m,n

U

1 + |n−m|
b̂†cnb̂cnb̂

†
vmb̂vm

(5.11)
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Exercise 5.3.2. To find the true excitations we must diagonalise the Hamiltonian

within the supspace spanned by the basis states |Φn,0⟩ with n = 0,...,N-1 (or equiv-

alently the state |Φk,0⟩ with k = k1, ..., kN ). Show that the matrix elements of this

N ×N Hamiltonian are given by

Hnm = ⟨Φn,0|Ĥ − E0|Φm,0⟩ = (εc − εv −
U

n+ 1
)δnm − 2tδn,m±1 (5.12)

NOTE: The sign on εv is changed compared to the problem handout, as

there must be an error in the problem handout.

Solution 5.3.2. The reason why we choose to investigate Ĥ − E0 is that this will give

us exactly the excitation energy rather than the total energy. We will do this term by

term, first we look at

⟨Φn,0|Ĥ0 − E0|Φm,0⟩ =

1

N

(
⟨0|
∑
n′

bn+n′,cbn′,v

[
−
∑
k

εv b̂
†
kv b̂kv +

∑
k

εcb̂
†
kcb̂kc

]∑
m′

b̂†m+m′,cb̂
†
m′v|0⟩

+ ⟨0|
∑
n′

bn+n′,cbn′,v

∑
k

−t
[
b̂†kcb̂k+1,c + b̂†kcb̂k−1,c

]∑
m′

b̂†m+m′,cb̂
†
m′v|0⟩

+ ⟨0|
∑
n′

bn+n′,cbn′,v

∑
k

−t
[
b̂†kv b̂k+1,v + b̂†kv b̂k−1,v)

]∑
m′

b̂†m+m′,cb̂
†
m′v|0⟩

)
(5.13)

Focusing on the second line above, it is seen from the valence band that m′ = n′, which

immeadiatly means that m = n. This is seen as the counting operators in the k-sums

do not change the state. The k-sums give a contribution when it tries to count in the

exactly right state only, so the second line reduces to

1

N

∑
n′

(εc − εv)δnm = (εc − εv)δnm (5.14)

In the third and fourth line the operator in the middle raises or lowers the state by one.

The result in either of those cases is the same. Thus it can be seen from the valence band

that n′ = m′± 1, which again means that the same goes for n and m (n = m± 1), again

the sums over k only gives contributions when it hits the right state, so it evaluates to

1

N

∑
n′

(−2t)δn=m±1 = −2tδn=m±1 (5.15)

Now for the interacting term:

⟨Φn,0|Ĥint|Φm,0⟩

=
1

N
⟨0|
∑
n′

bn+n′,cbn′,v(−
∑
k,l

U

1 + |k − l|
b̂†kcb̂kcb̂

†
lv b̂lv)

∑
m′

b̂†m+m′,cb̂
†
m′v|0⟩

(5.16)
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Again the operator in the middle only counts states, so as before m = n, as we have to

count the exact right states l = n′, and k = n+ n′ plugging this in we get

− 1

N

∑
n′

U

1 + |n+ n′ − n′|
δnm = − U

1 + n
δnm (5.17)

Collecting equation Eq. (5.14), Eq. (5.15) and Eq. (5.17), we get exactly that

Hnm = ⟨Φn,0|Ĥ − E0|Φm,0⟩ = (εc − εv −
U

n+ 1
)δnm − 2tδn,m±1 (5.18)

Exercise 5.3.3. Obtain the eigenstates

|Ψi⟩ =
∑
n

Fi(n) |Φn,0⟩ (5.19)

by solving the eigenvalue problem HFi = EiFi numerically for the two sets of pa-

rameters

εv = 0, εc = 5 + U, t = 1, U = 1, N = 1000

εv = 0, εc = 5 + U, t = 1, U = 10, N = 1000
(5.20)

Solution 5.3.3. The problem is solved by diagonalising the 1000x1000 matrix in matlab.

• For U=10 the lowest lying energy state has the energy 4.23.

• For U=1 the lowest lying energy state has the energy 1.88.

In figure 6 it is seen that for U=1 there are a lot of exciton states within the bandgap.

It is also seen that the probability of finding the exctiton is sort of smeared out over the

states, with a peak, when they are closest. The peak is due to the coulomb interaction,

but as this is weak the probability of finding them far apart is non vanishing.

In figure 7 it is seen that for U=10 there is only one exciton state within the bandgap.

It is seen that the probability of finding the electron and hole close together is very high.

Exercise 5.3.4. Argue that |Fi(n)|2 gives the probability for finding the elctron and

hole at a distance of n sites apart.

Solution 5.3.4. The exciton eigenstate, |Ψi⟩, is a coherent superposition of the exci-

tionic states. The excitonic states, |Φn,0⟩, are weighted by the function F (n), where each

state represents an exciton with the electron and hole separated n sites apart. Hence

|F (n)|2 correspond to the probability of finding the exciton in the exciton state separated

by n sites.
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Figure 6: The exciton energies and the lowest energy exciton probability plotted as a function of

the distance between the electron and holes in unit cells. Shown is also the bandgap energy. For

U = 1.
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Figure 7: The exciton energies and the lowest energy exciton probability plotted as a function of

the distance between the electron and holes in unit cells. Shown is also the bandgap energy. For

U = 10.

Exercise 5.3.5. Calculate (numerically) and plot the wave function F1(n) for the

lowest lying excition.

Solution 5.3.5.
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6 The one particle Green function

6.1 Spectral properties

Exercise 6.1.1. Show that the Green function is only a funciton of the timer dif-

ference t− t′ such that we can write

G(x, x′) = G(r, r′; τ), τ = t− t′ (6.1)

Solution 6.1.1. We start with the definition of the Green’s funciton given in equation

1 in the problem handout

G(x, x′) = −iθ(t− t′) ⟨N |{Ψ̂(x), Ψ̂(x′)}|N⟩ (6.2)

And plug in the form of the creation and annihilation operators from the Heisenberg

picture Ψ̂(x) = eiHtΨ̂(r)e−iHt, and Ψ̂†(x) = e−iHtΨ̂†(r)eiHt. Plugging this in gives

G(x, x′)

= −iθ(t− t′) ⟨N |eiHtΨ̂(r)e−iHteiHt′Ψ̂†(r)e−iHt′ + eiHt′Ψ̂†(r)e−iHt′eiHtΨ̂(r)e−iHt|N⟩
= −iθ(t− t′)eiE0(t−t′) ⟨N |Ψ̂(r)e−iHteiHt′Ψ̂†(r) + Ψ̂†(r)e−iHt′eiHtΨ̂(r)|N⟩

= −iθ(t− t′)eiE0(t−t′) ⟨N |{Ψ̂(r)eiH(t−t′)Ψ̂†(r) + Ψ̂†(r)eiH(t−t′)Ψ̂(r)|N⟩
(6.3)

So that it can now be seen that the greens function only depends on τ = t− t′

Exercise 6.1.2. Show that the Fourier transform of the Greens function may be

written as

G(r, r′;ω) ≡
∫ ∞

−∞
ei(ω+iη)τG(r, r′; τ)dτ (6.4)

G(r, r′;ω) =
∑
i

ΨQP
i+ (r)ΨQP

i+ (r′)∗

ω − εQP
i+ + iη

+
∑
i

ΨQP
i− (r)ΨQP

i− (r′)∗

ω − εQP
i− + iη

(6.5)

where the quasiparticle wave functions and energies have been defined as

ΨQP
i+ (r) = ⟨N |Ψ(r)|N + 1, i⟩ , εQP

i+ = Ei
N+1 − E0

N (6.6)

ΨQP
i− (r) = ⟨N − 1, i|Ψ(r)|N⟩ , εQP

i− = E0
N − Ei

N−1 (6.7)

Solution 6.1.2. Starting from equation 6.2 and only considering the first term in the

anti-commutator and inserting a complete set of eigenstates between the field operators
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(remembering that this in principle involves all states with any number of particles) we

may write

⟨N |Ψ(x)Ψ†(x′)|N⟩ = ⟨N |Ψ(x)
∑
i

|N + 1, i⟩ ⟨N + 1, i|Ψ†(x′)|N⟩ (6.8)

where we have used that the annihilation operator must act on an orbital i in a state

containing N + 1 particles, which we label |N + 1, i⟩. Here we can use the relation

Ψ(x) = eiHtΨ(r)e−iHt to explicitly account for the time dependence.

⟨N |Ψ(x)Ψ†(x′)|N⟩ =
∑
i

ei(E
0
N−Ei

N+1)(t−t′) ⟨N |Ψ(r)|N + 1, i⟩ ⟨N + 1, i|Ψ†(r′)|N⟩ (6.9)

Similarly we may obtain an equation for the other term in the anti-commutator, remem-

bering that we here must act on all states containing N − 1 particles.

⟨N |Ψ†(x′)Ψ(x)|N⟩ =
∑
i

ei(E
i
N−1−E0

N )(t−t′) ⟨N |Ψ†(r′)|N − 1, i⟩ ⟨N − 1, i|Ψ(r)|N⟩

(6.10)

Defining the energies in the exponential and the inner products in accordance with equa-

tions (6.6) and (6.7) we may write the entire Greens function as

G(r, r′; τ) = −iθ(τ)

(∑
i

e−iεQP
i+ τΨQP

i+ (r)ΨQP
i+ (r′)∗ +

∑
i

e−iεQP
i− τΨQP

i− (r)ΨQP
i− (r′)∗

)
(6.11)

As the quasi-particle field operators are independent of τ the Fourier transform is simply

over the exponential function ei(ω+iη−εQP
i± )τ bringing the argument into the denominator.

The boundaries are now τ = 0 and τ → ∞ hence only the τ = 0 term will contribute

(ensured by η). Performing the Fourier transform gives the solution

G(r, r′;ω) =
∑
i

ΨQP
i+ (r)ΨQP

i+ (r′)∗

ω − εQP
i+ + iη

+
∑
i

ΨQP
i− (r)ΨQP

i− (r′)∗

ω − εQP
i− + iη

(6.12)

6.2 Non-interacting electrons

Exercise 6.2.1. Suppose that we have a non-interacting Hamiltonian H ∗ 0. The

manyparticle state |N⟩ is then an N-particle Slater determinant composed of the N

single particle orbitals ϕn(r) with eigenvalues εn.

Show that the QP wave functions and energies coincide with single particle orbitals

36



10305 Weekly exercises

and energies and thus from Eq. (4) the non-interacting Green function becomes

G0(r, r′;ω) =

N∑
n=1

ϕn(r)ϕ
∗
n(r

′)

ω − εn + iη
+

∞∑
n=N+1

ϕn(r)ϕ
∗
n(r

′)

ω − εn + iη

=
∞∑
n=1

ϕn(r)ϕ
∗
n(r

′)

ω − εn + iη

(6.13)

Solution 6.2.1. We start of by evaluating the quasi particle wave functions (eq 6 and

7 in the project handout), where we write the field operators in second quantised form

ΨQP
i+ (r) = ⟨N |

∑
n

ϕncn|N + 1, i⟩ = ϕn

ΨQP
i− (r) = ⟨N − 1, i|

∑
n

ϕncn|N⟩ = ϕn
(6.14)

Both of these equations are only non-zero if the annihilation operators remove exactly

the i’th state. The top sum only has to evaluate from N + 1 to infinity, whereas the

bottom from 1 to N , because otherwise they try to remove electrons that will not bring

it to the ground state. Thereby the sums in equation (5) in the problem hand can be

changed to run over those exact indices, and the energies in the denominator are just

given by the energy associated with the i’th state. Thus the result is obtained by letting

i→ n

G0(r, r′;ω) =
N∑

n=1

ϕn(r)ϕ
∗
n(r

′)

ω − εn + iη
+

∞∑
n=N+1

ϕn(r)ϕ
∗
n(r

′)

ω − εn + iη

=
∞∑
n=1

ϕn(r)ϕ
∗
n(r

′)

ω − εn + iη

(6.15)

Exercise 6.2.2. Show that the trace of the non-interacting spectral function∫
drA0(r, r, ω) (6.16)

is equal to the density of states of the non-interacting Hamiltonian.

Solution 6.2.2. The spectral function is given by equation (13) in the problem handout

A0(ω) = − 1

π
Im(G0(ω)) (6.17)
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Plugging in the Green’s function as given in equation (18) in the problem handout gives

A0(ω) =
1

π

∑
n

πδ(ω − εn) |ϕn⟩ ⟨ϕn| (6.18)

Where we used the relation limη→0
1

x+iη = P
x − iπδ(x).

So that the trace is ∫
drA0(r, r, ω) =

∫
dr
∑
n

δ(ω − εn) |ϕn⟩ ⟨ϕn| (6.19)

Which is the density of states of the non-interacting Hamiltonian.

6.3 The self-energy

Exercise 6.3.1. Show that the non-interacting Greens function satisfies the equa-

tion of motion [
i
∂

∂τ
−H0(r)

]
G0(r) = δ(r − r′)δ(τ) (6.20)

Next, Fourier transform Eq. 6.20 with respect to τ and verify that it is solved directly

by equation (6.13).

Solution 6.3.1. Using the definition of the Greens function in real space Eq. (6.2) along

with the general time derivative of an operator obtained from the Heisenberg picture

i∂A/∂t = [A,H] we may write
∂

∂τ
G0(r, r′, τ) (6.21)

6.4 On the physical meaning of the QP wave functions

Exercise 6.4.1. Use the identity

c†i =

∫
drϕi(r)Ψ

†(r) (6.22)

to show that the maximum of
∣∣∣ ⟨N + 1, i|c†i |N, 0⟩

∣∣∣2 is obtained when ϕi is proportional

to ΨQP
i+ . In other words, the QP wave function ΨQP

i+ is the orbital that best mimics

the true excited state |N + 1, i⟩ of the interacting system in the sense of Eq. (41).

Similarly the QP state ΨQP
i− is the orbital that makes ĉi |N, 0⟩ the best approximation

to the excited state |N − 1, i⟩
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Solution 6.4.1. We plug in the expression for ĉ†i to get∣∣∣∣ ⟨N + 1, i|
∫

drϕi(r)Ψ
†(r)|N, 0⟩

∣∣∣∣2 (6.23)

The integral and the function ϕi(r) can be taken outside the inner product, which can

furthermore be expanded, so that we get∫
dr|ϕi(r)|2 ⟨N + 1, i|Ψ†(r)|N, 0⟩ ⟨N, 0|Ψ(r)|N + 1, i⟩ (6.24)

From the above the quasi particle wave function from equation (6) in the problem handout

can be easily recognised, so that∫
dr|ϕi(r)|2

∣∣∣ ⟨N + 1, i|Ψ†(r)|N, 0⟩
∣∣∣2 (6.25)

This is an overlap integral , which clearly is maximised if the two functions overlap, or

equivalently one is proportional to the other.

Note: What this means is that one can verify how well the model of non interacting

electrons works, by checking how well the non interacting wave functions can resemble

the quasi particle wave function.

Exercise 6.4.2. Next, prove that the norm of the QP wave function is given by∫ ∣∣∣ΨQP
i+ (r)

∣∣∣2dr = ⟨N + 1, i|ĉ†i |N, 0⟩ (6.26)

with ĉ†i creating an electron in the normalised QP state
∣∣∣ΨQP

i+

〉
. Consequently the

norm of the QP state ΨQP
i+ signals to which extent the excited state |N + 1, i⟩ can

be regarded as a single-particle excitation.

Solution 6.4.2. f

6.5 Hartree-Fock approximation

Exercise 6.5.1. Apply Wick’s theorem to G2 in Eq. (49)

G2(r, r
′, r′′; t) = −θ(t) ⟨N |

{
Ψ̂†(r′′, t)Ψ̂(r, t)Ψ̂(r′′, t), Ψ̂†(r′)

}
|N⟩ (6.27)

and show that

G2(r, r
′, r′′; t) = in(r′′)G(r, r′, r)− iρ(r′′, r)G(r′′, r′, t) (6.28)
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Where n(r′′) = ⟨N |Ψ̂†(r′′)Ψ̂(r′′)|N⟩ is the ground state density and ρ(r′, r) =

⟨N |Ψ̂†(r′)Ψ̂(r)|N⟩ is the ground state one-particle density matrix.

Solution 6.5.1. To do this we wish to apply Wick’s theorem, which for a four operator

expectation value can be expressed as

⟨abcd⟩ = ⟨ab⟩⟨cd⟩ − ⟨ac⟩⟨bd⟩+ ⟨ad⟩⟨bc⟩ (6.29)

Writing out Eq. (6.27) gives

G2(r, r
′, r′′; t) = −θ(t) ⟨N |Ψ̂†(r′′, t)Ψ̂(r, t)Ψ̂(r′′, t)Ψ̂†(r′)|N⟩

−θ(t) ⟨N |Ψ̂†(r′)Ψ̂†(r′′, t)Ψ̂(r, t)Ψ̂(r′′, t)|N⟩
(6.30)

The expectation values will only be non zero if they are products of one creation and one

annihilation operator, so the above reduces to

−θ(t) ⟨N |Ψ̂†(r′′, t)Ψ̂(r, t)|N⟩ ⟨N |Ψ̂(r′′, t)Ψ̂†(r′)|N⟩
+θ(t) ⟨N |Ψ̂†(r′′, t)Ψ̂(r′′, t)|N⟩ ⟨N |Ψ̂(r, t)Ψ̂†(r′)|N⟩
+θ(t) ⟨N |Ψ̂†(r′)Ψ̂(r, t)|N⟩ ⟨N |Ψ̂†(r′′, t)Ψ̂(r′′, t)|N⟩
−θ(t) ⟨N |Ψ̂†(r′)Ψ̂(r′′, t)|N⟩ ⟨N |Ψ̂†(r′′, t)Ψ̂(r, t)|N⟩

(6.31)

Now using the definitions of n(r′′) and ρ(r′, r) it reduces to

−θ(t)ρ(r′′, r) ⟨N |Ψ̂(r′′, t)Ψ̂†(r′)|N⟩
+θ(t)n(r′′) ⟨N |Ψ̂(r, t)Ψ̂†(r′)|N⟩
+θ(t) ⟨N |Ψ̂†(r′)Ψ̂(r, t)|N⟩n(r′′)

−θ(t) ⟨N |Ψ̂†(r′)Ψ̂(r′′, t)|N⟩ ρ(r′′, r)

(6.32)

This is recognised as being anticommutators with ρ or n taken outside parentheses,

−ρ(r′′, r)θ(t)( ⟨N |Ψ̂(r′′, t)Ψ̂†(r′)|N⟩+ ⟨N |Ψ̂†(r′)Ψ̂(r′′, t)|N⟩)
+n(r′′)θ(t)( ⟨N |Ψ̂(r, t)Ψ̂†(r′)|N⟩+ ⟨N |Ψ̂†(r′)Ψ̂(r, t)|N⟩)

(6.33)

Plugging in the definition of the Green function given in equation 1 we obtain the right

result

G2(r, r
′, r′′; t) = in(r′′)G(r, r′, r)− iρ(r′′, r)G(r′′, r′, t) (6.34)

40



10305 Weekly exercises

7 Week 8 & 9, Newns Anderson model

7.1 Section 1; The Green function

Exercise 7.1.1. Show that the Fourier transform of the uncoupled Green functions

are given by

G0
ij(ω) =

δij
ω − εi + iη

(7.1)

Where i, j ∈ {k, a} and η is a positive infinitesimal.

Solution 7.1.1. The basis independent form the Green function is given by equation 18

in the note on Green functions:

Ĝ0(ω) =
∑
n

|ϕn⟩ ⟨ϕn|
ω − εn + iη

(7.2)

We wish to find the uncoupled Greens functions, hence we operate in the basis of the

Greens function with the states spanned in i, j ∈ {k, a}. Hence each element can be

expressed as the matrix element in the following way:

G0
ij(ω) = ⟨ϕi|Ĝ0(ω)|ϕj⟩ =

∑
n

⟨ϕi|ϕn⟩ ⟨ϕn|ϕj⟩
ω − εn + iη

(7.3)

And as the set of ϕm constitutes an orthonormal basis the inner products vanish apart

from the cases where i = n = j, so that

G0
ij(ω) =

δij
ω − εi + iη

(7.4)

7.2 Section 2; Embedding self-energy

Exercise 7.2.1. Use equation (4):

[(ω + iη)I −H0]G
0(ω) = I (7.5)

and (5):

[(ω + iη)I −H]G(ω) = I (7.6)

to show that the full Green function, G, fulfills the Dyson equation

Gaa(ω) = G0
aa(ω) +G0

aa(ω)
∑
k

VakGak(ω) (7.7)
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Solution 7.2.1. To solve this we first isolate H0 in Eq. (7.5)

H0 = −I(G0)−1 + [(ω + iη)] I (7.8)

In equation 7.6 we write H = H0 + V and plugin equation 7.8

(G0)−1G(ω)− V G(ω) = I (7.9)

Now we multiply by (G0) from the left, and isolate G(ω) to obtain

G(ω) = G0V G(ω) +G0 (7.10)

To find Gaa we take the inner product with an a bra and ket.

Gaa = ⟨a|G0|a⟩+ ⟨a|G0V G|a⟩ (7.11)

As G0 is diagonal in a (see equation 7.1) this term reduces trivially, and the remaining

term can be found by introducing several ”ones” in a spectral representation.

Gaa = G0
aa + ⟨a|G0

∑
b

|b⟩ ⟨b|V
∑
k

|k⟩ ⟨k|G|a⟩ (7.12)

= G0
aa +

∑
b=a

∑
k

⟨a|G0 |b⟩ ⟨b|V |k⟩ ⟨k|G|a⟩ (7.13)

= G0
aa +

∑
k

G0
aaVakGka (7.14)

Where it was used that G0 is non interacting so that a has to equal b.

Exercise 7.2.2. Write down a similar equation for Gka(ω) and show that∑
k

VakGka(ω) =
∑

G0
kk|Vak|

2Gaa(ω) (7.15)

and combine the resulting equation in Gak with the result from Gaa to obtain

Gaa(ω) = G0
aa(ω) +G0

aa(ω)Σaa(ω)Gaa(ω) , Σaa(ω) =
∑
k

|Vak|2

ω − εk + iη
(7.16)

Solution 7.2.2. Starting from Eq. (7.10) we may obtain Gka by taking the matrix

element ⟨k|G|a⟩ with k ̸= a.

Gka = G0
ka +

∑
k′,k′′

〈
k
∣∣G0
∣∣k′〉 〈k′∣∣V ∣∣k′′〉 〈k′′∣∣G∣∣a〉 (7.17)
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as G0
ka = 0 for all k ̸= a and we only consider k ̸= a this term is trivially zero. Similarly

k = k′ following the same argument, removing the k′ sum. As Vc,d is only non-zero

when either c = a and d ∈ k or d = a and c ∈ k we must also have that k′′ = a, further

removing the k′′ sum. Hence

Gka = G0
kkVkaGaa (7.18)

Multiplying by Vak and summing over k, and noting that Vak = V ∗
ka we obtain the solution∑

k

VkaGka =
∑
k

G0
kk|Vka|

2Gaa (7.19)

Defining the self energy as

Σaa(ω) =
∑
k

G0
kk|Vka|

2 =
∑
k

|Vak|2

ω − εk + iη
(7.20)

and inserting Eq. (7.19) in Eq. (7.14) we directly obtain the decoupled Dyson-like equa-

tion in Gaa

Gaa(ω) = G0
aa(ω) +G0

aa(ω)Σaa(ω)Gaa(ω) (7.21)

7.3 Section 3; Wideband approximation

Exercise 7.3.1. If the metal density of states is approximately constatnt in the

region of the localising state and the coupling elements Vak varies only little with

k, the function ∆(ω) = ∆ becomes a constant and the real part of the self-energy

vanishes. This is known as the wideband limit.

Show that the Green function function in this approximation becomes

Gaa(ω) =
1

ω − εa + i∆/2
(7.22)

Calculate and sketch the spectral function Aa(ω) = −ImGaa(ω)

Solution 7.3.1. We start of with equation (8) in the project handout and write the self

energy as a sum of a real and an imaginary part.

Gaa(ω) =
1

ω − εa − (Re(Σaa(ω)) + iIm(Σaa(ω)))
(7.23)

Now we use that the imaginary part is constant, the real part is zero and equation (9)

in the project handout, that states that

Im(Σaa(ω)) = −∆

2
(7.24)

43



10305 Weekly exercises

Upon plugging this in above the result is obtained

Gaa(ω) =
1

ω − εa + i∆/2
(7.25)

To find the imaginary part of this we multiply both the nominator and denominator with

the complex conjugate of the denominator to obtain

Gaa(ω) =
ω − εa − i∆/2

(ω − εa)2 +∆2/4
(7.26)

So we obtain

Aa(ω) = −Im(Gaa(ω)) =
∆/2

(ω − εa)2 +∆2/4
(7.27)

2/∆

ω = ϵa

ω

Aa(ω)

Figure 8: Illustration of the local density of states for the adsorbed molecule, assuming the self

energy to be frequency independent.

This is a lorentzian shape, that is sketched in figure 8. As this is the diagonal elements

of the spectral function, it describes local density of states.

Exercise 7.3.2. Show that the Green function takes the following form in the time

domain,

Gaa(t) = −iθ(t)e−i(ε0−i∆/2)t (7.28)

Solution 7.3.2. The easiest way to do this is to Fourier transform Eq. (7.28), and show

that it gives exactly the Green function in the frequency domain given by equation (11)

in the problem handout. So we perform the Fourier transform:

Gaa(ω) =

∫ ∞

−∞
−iθ(t)e−i(ε0−i∆/2)teiωtdω (7.29)
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Note that this time there was no reason to include an infinitesimal imaginary part in the

Fourier transform to make it converge, as this is handled by the i∆.

The heavyside function means that the fourier transform only runs from 0 to infinity, so

the integral is just

Gaa(ω) =

∫ ∞

0
−ie−i(ε0−i∆/2−ω)tdω =

i

−i(ε0 − i∆/2− ω)
=

1

ω − ε0 + i∆/2
(7.30)

Alternatively this may be obtained by starting from the definition of the Greens function,

but with an energy correction to the single particle energies such that Ĥ0 |N + 1, i⟩ =

(ε0) + εi + i∆/2 |N + 1, i⟩ so that

Gaa(t) = −iθ(t)eiε0t
(
⟨N |ca(t)e−iĤ0tc†a(0)|N⟩+ ⟨N |c†a(t)eiĤ0tca(0)|N⟩

)
(7.31)

remembering that the two terms correspond to the electron and hole, respectively, prop-

agating from time t = 0 to t. Focusing on the electron and the cases of εi < εf and

εi > εf separately, we see that the first and second term, respectively, equals zero. The

remaining terms have the same sign so that regardless of εi it takes the form:

Gaa(t) = −iθ(t)e−i(εi+i∆/2)t (7.32)

With this result we see that |Gaa(t)|2 correspond to the probability of the electron (hole for

εi < εf ) inserted at time t = 0 is still in the same orbital at time t. Before introducing

the energy correction i∆/2 the state would be unchanged as it is non-interacting. Now

it decays, corresponding to an inverse life time.

7.4 Section 4; Discrete approximation

Exercise 7.4.1. Assume that ∆(ω) can be represented as a delta function located

at < εk > and use a drawing to show that Gaa(ω) can have two distinct poles in this

case.

Solution 7.4.1. Using the Kramer-Kronig relations we have that

Γ(ω) =
P

2π

∫
δ(ω′ − ωk)

ω − ω′ dω′ =
P

2π

1

ω − ωk
∝ 1

ω − ωk
(7.33)

where ωk =< εk > and P is the Cauchy principal value. Looking at Gaa(ω) we have that

Gaa(ω) =
1

ω − εa − Γ(ω)− i∆/2
(7.34)

Hence it is clear that we have poles at:

ω − εa − Γ(ω) = 0 (7.35)
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εa ωk

ω − εaΓ(ω)

ω

Figure 9: Schematic illustration of the two poles of Gaa for the discrete approximation. The

poles are highlighted with circles and are found as the intersection of the two curves Γ(ω) and

ω − εa.

which is a second order polynomial in ω with two distinct roots when (ωk+εa)
2−2P ≥ 0.

This may be illustrated by plotting the straight line (ω−εa) against Γ(ω) as done in figure

9. An alternative approach is to interpret the delta function behaviour as collapsing the

sum in Eq. (7.20) so that

Σaa(ω) =
∑
k

|Vak|2

ω − εk + iη
≈ |Vak|2

ω− < εk > +iη
(7.36)

Hence the imaginary part of Σaa resembles a delta function in the η → 0 at ω =< εk >.

7.5 Section 5; Semi-elliptic band

Exercise 7.5.1. Show that the imaginary part of the complex function

f(z) = a(z/b−
√

[(z + iη)/b]2 − 1) (7.37)

regarded as a function of x = Re{z} describes a semi-ellipse of height a and width

2b. Argue that if ∆(ω) us a semi-ellipse of height a, width 2b, Γ(ω) can be obtained

from the real part of f(z) and is given by

Γ(ω) =
a

2

(
ω/b− θ(|ω| − b)sign(ω)

√
(ω/b)2 − 1

)
(7.38)

Solution 7.5.1. In this case the self energy is represented by Eq. (7.37), and thus the

imaginary, ∆/2, and real, Γ, parts are obtained from f(z). Regarding z as real and
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remembering that we have to work in the limit of η → 0 the only way f(z) can have an

imaginary part is when the argument of the square-root is negative. This can readily be

seen to be when |z/b|2 < 1. Analysing the imaginary part: Im{f(z)} ≠ 0 we have that

Im{f(z)} =

−a
√

1− (z/b)2 , z2 ≤ b2

0 , z2 > b2
(7.39)

This can be recognised as a semi-ellipse of height a, width 2b, and centered at z = 0.

This means that if ∆(ω) is a semi-ellipse with the aforementioned parameters, Γ(ω) can

be obtained by the real part of f(z)/2 (remembering that ∆/2 = Im{Σ}. The real part

may be obtained in a similar fashion by analysing the two cases separately

Re{f(z)} =

az/b , z2 ≤ b2

az/b−
√
(z/b)2 − 1 , z2 > b2

(7.40)

Letting z → ω we may alternatively write both functions as continuous functions (in

contrast to the piece-wise formulation) through the use of the heavy-side function at

θ(|ω| − b). Hence

Γ(ω) =
a

2

(
ω/b− θ(|ω| − b)

√
(ω/b)2 − 1

)
(7.41)

∆(ω) = −θ(|ω| − b)a
√
(ω/b)2 − 1 (7.42)

Exercise 7.5.2. Assume that ∆(ω) is a semi-ellipse of width 2, height a and cen-

tered at ω = 0. Sketch ∆(ω) and Γ(ω). Draw also the straight line ω−εa for ϵa = 0,

as well as the spectral function:

Aa(ω) = − 1

2π

∆(ω)

(ω − εa − Γ(ω))2 + (∆(ω)/2)2
(7.43)

in the two cases where a≫ 1 (strong coupling) and a≪ 1 (weak coupling). Discuss

the results and compare with the wide band and discrete approximations.

Solution 7.5.2. The semi-elliptic model allows for a continuous transition from the

extremely de-localised bands (wideband approximation), e.g. s-bands, to the extremely

localised bands (Discrete model), e.g. molecules and atoms. As a consequence we may be

able to model the most pronounced features of e.g. the d-bands which lies somewhere in

between the discrete and wideband approximation. We see that for strong coupling, a≫ 1

we have two poles in the Greens function as in the case of the discrete approximation,

where as for weak coupling a ≪ 1 the spectral density resembles the shape from the
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A(ω)

ω − εa

Γ(ω)

∆(ω)

a = 8

ω

A(ω)

ω − εa

Γ(ω)

∆(ω)

a = 0.2

ω

Figure 10: Schematic illustration of the semi-elliptic model for strong (a = 8) and weak (a = 0.2)

coupling, with εa = 0 and b = 2.

wideband approximation. Hence we are able to model the transition from two distinct

poles in the Greens function to one, or none. Figure 10 sketches Γ, ∆, Aa and ω − εa

making use of equations (7.41), (7.42), and (7.43), for strong and weak coupling.
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8 Image charge

8.1 Screened interaction and image charge problem

Exercise 8.1.1. We consider a point charge q (we use atomic units so q is measured

in units of the elementary charge e) located a distance z outside a semi-infinite metal

surface. Argue that the potential energy of the point charge is given by

Vimg(r) = − q
2

4z
(8.1)

Solution 8.1.1. The conductor will respond to the point charge by screening, which will

create an electric field opposing it, so that there is no netto field inside the conductor.

This electric field is not very easy to compute, however this problem is the same as

another problem. To see this we need to use that the tangential component of the electric

field to the surface is continuous across the surface, however since there is no E-field

inside the conductor the field lines must point perpendicularly into the surface.

q −q

2z

z′

Figure 11: Illustration of the problem, where we instead solve the equivalent problem of the image

charge. The conductor above should be imagined to be infinite. The drawn lines illustrates the

E-field which are the same regardless if we are looking at the problem with two charges, or the

one with one charge and a conductor
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The force between the two particles in atomic units is given by the Coulombs force

F = − q2

(2z)2
(8.2)

Which means that the potential energy of the point charge is given by

Vimg =

∫ z

∞
Fdz′ = −

∫ z

∞

q2

4z
dz′ = − q

2

4z
(8.3)

Where z is chosen as the upper limit as this is the distance between the point charge and

the conductor.

Exercise 8.1.2. Argue that the potential at point r′ due to the charge density in-

duced in the surface bu a unit charge (q = e) point charge at position r is given

by

∆Wimg(r, r
′) = −1

2
[(x− x′)2 + (y − y′)2 + (z + z′)2]−1/2 (8.4)

Note that ∆Wimg(r, r) = Vimg(r) as it should.

q at r = (x, y, z) −q at rc = (x, y,−z)

q at r′ = (x′, y′, z′)

z′ − z 2z

Figure 12: The problem, now with an extra charge at r′

Solution 8.1.2. It is straight forward to show by following the same approach as above.

There are two contributions for the charge at r’, from the charge at r. One direct potential

given by

vdirect =
q2√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2
(8.5)
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And one from the image charge induced by the charge at r given by

vimage =
−q2√

(x′ − x)2 + (y′ − y)2 + (z′ − z + 2z)2

=
−q2√

(x′ − x)2 + (y′ − y)2 + (z′ + z)2

(8.6)

Where vimage is exactly ∆Wimg as defined in the problem.

Exercise 8.1.3. Show, using the well known relation between the dielectric function

and the density response function, that the screened potential induced by the metal

surface is given by

∆W (r, r′) =

∫ ∫
v(r, r1)χ(r1, r2)v(r2, r

′)dr1dr2 (8.7)

where

W (r, r′) =

∫
ϵ−1(r, r′′)v(r′, r)dr′′ and ∆W (r, r′) =W (r, r′)− v(r, r′) (8.8)

NB! Note that the index on the potential differs from the notes.

Solution 8.1.3. The ”well known” relation between the density response function and

the dielectric function is given by

ϵ−1(r, r′′) = δ(r − r′′) +

∫
1

|r − r1|
χ(r1, r

′′)dr1 (8.9)

Inserting this in the definition of the induced potential, Eq. (8.8) right we get

∆W (r, r′) =

∫
δ(r − r′′)v(r′′, r′)dr′′ +

∫ ∫
1

|r − r1|
χ(r1, r

′′)v(r′′, r′)dr1dr
′′ − v(r, r′)

(8.10)

Evaluating the integral over the delta function and re-indexing r′′ → r2, and rearranging

we get

∆W (r, r′) = v(r, r′)− v(r, r′) +

∫ ∫
1

|r − r1|
χ(r1, r2)v(r2, r

′)dr1dr2 (8.11)

Finally we recognise the Coulomb term as the potential v(r, r1) to get:

∆W (r, r′) =

∫ ∫
v(r, r1)χ(r1, r2)v(r2, r

′)dr1dr2 (8.12)

8.2 Energy levels from the COH-SEX approximation
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Exercise 8.2.1. Show that when the electron-electron interactions are included at

the level of the COH-SEX approximation, the difference between the energy levels of

the adsorbed and isolated molecules becomes approximately

εH − εgasH ≈ 1

2
⟨ΨH |∆W |ΨH⟩ − (|ΨH |2,∆W,

∣∣Ψ2
h

∣∣) (8.13)

εL − εgasL ≈ 1

2
⟨ΨL|∆W |ΨL⟩ (8.14)

where ∆W (r, r′) =WN (r, r′)−WF (r, r
′) (N : near, F : far) is the difference between

the screened interaction with and without the metal surface present and we have

introduced the following shorthand notation for a double integral

(f,A, g) =

∫ ∫
f(r)A(r, r′)g(r′)drdr′ (8.15)

Note that the exercise has the difference in the electron affinity defined as εL−εgasH ,

which is a typo.

Solution 8.2.1. In the static version of the GW approximation, also called the COH-

SEX approximation, the self energy takes the form of a non-local one-electron potential,

given by:

Σ(r, r′) =
1

2
[W (r, r′)− v(r, r′)]δ(r − r′)− ρ(r, r′)W (r, r′) (8.16)

where ρ is the one particle density matrix. Denoting the energies by a superscript ”far”

if the molecules are far away from the metal we may write the ionization potential of the

system is given by εH − εgasH where H refers to the HOMO. The QP energy levels and

wave functions of the molecules fulfill the QP equation

[H0 +Σ(εQP
i )(r, r′)]

∣∣∣ΨQP
i

〉
= εQP

i

∣∣∣ΨQP
i

〉
(8.17)

Hence we may find the difference in the ionisation energy of the system with and without

the screened interaction by subtracting the QP equations for the two systems, which only

differs by the self-energy term

[H0 +Σ(εH)N −H0 −Σ(εFH)] |ΨH⟩ = [Σ(εNH)−Σ(εFH)] |ΨH⟩ = (εH − εgasH ) |ΨH⟩ (8.18)

Note: The wave functions may only be assumed to be the same as we are placing the

molecule far enough away from the metal surface that we can assume that the orbitals

do not overlap, which means the wave functions of the molecule are the same as if there

were no metal surface.

Taking the expectation value involves a double integral over r and r′ as the self-energy is
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non-local, hence the expectation value from of the Hamiltonian with the self energy may

be stated as ∫ 〈
ΨH(r)

∣∣Ĥ0δ(r − r′) + Σ(r, r′)
∣∣ΨH(r′)

〉
dr′ (8.19)

where we have explicitly treated the position dependence. Hence without the self-energy

the inner product is defined in it usual form, which shows that Ĥ0 is diagonal in the r

basis. Evaluating equation 8.18 in the COH-SEX approximation yields:

εH − εgasH ≈
∫

1

2
⟨ΨH |[WN (r, r′)− vN (r, r′)−WF (r, r

′) + vF (r, r
′)]δ(r − r′)|ΨH⟩

− ⟨ΨH |ρN (r, r′)WN (r, r′)− ρF (r, r
′)WF (r, r

′)|ΨH⟩ dr′

(8.20)

Evaluating the first expectation value, with vN = vF reduces the expression to∫
⟨ΨH |[∆WN (r, r′)−∆WF (r, r

′)]δ(r, r′)|ΨH⟩ dr′ = ⟨ΨH |∆W (r, r′)|ΨH⟩ (8.21)

Analysing the second term in Eq. (8.20) shows that we may similarly write it in terms

of ρF (r, r
′) = |ΨH⟩ ⟨ΨH | = ρN (r, r′) and ∆W (r, r′) to obtain∫ ∫
Ψ∗

H(r)ΨH(r)Ψ∗
H(r′)∆W (r, r′)ΨH(r′)dr′dr =

∫ ∫
|ΨH |2∆W (r, r′)|ΨH |2dr′dr

(8.22)

which is alternatively written as (|ΨH |2,∆W (r, r′), |ΨH |2). Hence the ionisation energy

from Eq. (8.20) can be written as

εH − εgasH ≈ 1

2
⟨ΨH |∆W |ΨH⟩ −

(
|ΨH |2,∆W, |ΨH |2

)
(8.23)

The electron affinity can be found from the LUMO state, following the same approach

so that the equivalent of Eq. (8.20) reads

εL − εgasL ≈
∫

1

2
⟨ΨL|[WN −WF ]δ(r − r′)|ΨL⟩ − ⟨ΨL|ρNWN − ρFWF |ΨL⟩ dr′ (8.24)

Again the first term readily simplifies to∫
⟨ΨL|[WN −WF ]δ(r − r′)|ΨL⟩ dr′ = ⟨ΨL|∆W |ΨL⟩ (8.25)

The second term needs a more care full treatment as the density operator is given by

ρN (r, r′) = |ΨH(r)⟩ ⟨ΨH(r′)| = ρF (r, r
′), like before, because the only occupied state(s)

contributing to the interacting density is the HOMO density. Consequently we have∫
⟨ΨL|ρNWN − ρFWF |ΨL⟩ dr′ =

∫ ∫
Ψ∗

L(r)ΨH(r)Ψ∗
H(r′)∆W (r, r′)ΨL(r

′)drdr′

(8.26)
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Assuming ∆W (r, r′) to be approximately constant, across the molecule, Eq. (8.26) re-

duces to the

∆W ⟨ΨL|ΨH⟩ ⟨ΨH |ΨL⟩ = 0 (8.27)

as ΨL and ΨH are orthogonal. Hence the electron affinity, in the COH-SEX approxima-

tion, takes the form

εL − εgasL ≈ ⟨ΨL|∆W |ΨL⟩ (8.28)

Exercise 8.2.2. Use the classical model for the image charge potential ∆W and

sketch how the HOMO and LUMO energy levels vary as function of the metal

molecule separation.

Solution 8.2.2. Recalling that the quasi-particle energies εH and εL relates to the ion-

isation potential and electron affinity, respectively, through the definition

εH = E(N)− E(N − 1) , εL = E(N + 1)− E(N) (8.29)

As found in the previous exercise both energies shifts in energies will have a z−1 de-

pendence, and in addition the ionisation potential will be shifted by a constant (Again

assuming that ∆W is approximately constant throughout the extend of the molecule).

However, the z−1 dependence will differ in sign for the two cases.

In the HOMO case we are studying the change in energy of the removal energy when we

include screening from the metal surface. In this case the test charge (the removed elec-

tron) as depicted in figure 12 has the opposite charge and as a consequence the potential

from the image charge will go as +z−1.

In the LUMO case we are studying the change in energy of adding an electron when

including screening. In this case the test charge (the added electron) will have the same

sign and consequently the potential from the image charge will go as −z−1.

εgasL

εgasL

LUMO

HOMO

z (Distance from molecule)

ε

Figure 13: Schematic illustration of the change in the ionisation potential (HOMO) and electron

affinity (LUMO) when including screening from a nearby metal surface, calculated using the

COH-SEX approximation with the classical screened potential (Eq. (8.6)).
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9 Correlation energies from the Random Phase Approxi-

mation

9.1 The adiabatic connection

Exercise 9.1.1. Show the Hellman-Feynman theorem.

d

dλ
⟨Ψλ|Âλ|Ψλ⟩ = ⟨Ψλ|

d

dλ
Âλ|Ψλ⟩ (9.1)

(Hint: Use that ⟨Ψλ|Ψλ⟩ = 1 for all λ)

Solution 9.1.1. Upon applying the operator on both sides we obtain

d

dλ
⟨Ψλ|aλ|Ψλ⟩ = ⟨Ψλ|

d

dλ
aλ|Ψλ⟩ (9.2)

aλ can be moved outside the integral, and so can the derivative in the second term as the

integral is not over λ, thus
d

dλ
aλ =

d

dλ
aλ (9.3)

Where the hint was used, thus it is shown.
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